The future of NA48: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

Augusto Ceccucci/CERN

- We propose to measure the very rare $K^+ \rightarrow \pi^+ \nu \nu$ decay at the CERN SPS
- 10¹³ kaon decays by 2010 to measure |V_{td}| to ~10%
- Compatible with the rest of the CERN programme
- By-products:
 - 1. Search for $K^+ \rightarrow \pi^+ X$
 - 2. Kaon and Pion(?) rare decays
 - 3. ? theorists, please suggest

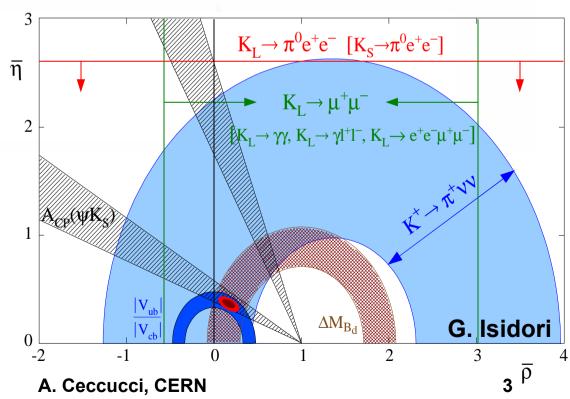
Kaon Mini Workshop April 13, 2005

Proposal to Measure the Rare Decay $K^+ \rightarrow \pi^+ \nu \nu$ at the CERN-SPS

CERN-SPSC-2005-013 SPSC-P-326

CERN, Dubna, Ferrara,

Firenze, Frascati, Mainz, Merced, Moscow (INR), Napoli, Perugia, Pisa, Protvino, Roma, Saclay, Sofia, Torino, +??


Kaon Rare Decays and the SM

$$K_L o \pi^0
u ar{
u}$$
 (holy grail)
 $K_L o \pi^0 e^+ e^ K_S o \pi^0 e^+ e^ K_L o \pi^0 e^+ e^ K_L o e e \gamma \gamma$

Kaons provide quantitative tests of SM independent from B mesons...

...and a large window of opportunity exists!

Im
$$\lambda_t = A^2 \lambda^5 \eta$$

Re $\lambda_t = A^2 \lambda^5 \rho$

$K\rightarrow\pi\nu\nu$: Theory in Standard Model

$$\kappa_{+} = r_{K^{+}} \cdot \frac{3\alpha^{2}Br(K^{+} \to \pi^{0}e^{+}\nu)}{2\pi^{2}\sin^{4}\theta_{W}} \cdot \lambda^{8}$$

The Hadronic Matrix Element is measured and isospin rotated (~10% correction)

Predictions in SM

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (8.0 \pm 1.1) \times 10^{-11}$$
 (latest CKM workshop)

Error ~ 14% Mainly parametric Theory error due to charm (Buras04):

$$P_c(X) = 0.389 \pm 0.033(m_c) \pm 0.045(\mu_c) \pm 0.010(\alpha_s)$$

For long distance contribution see: "LIGHT-QUARK LOOPS IN K->PI NU NU" By G. Isidori, C.Smith, F.Mescia. e-Print Archive: hep-ph/0503107

Largest contribution from scale error. To be reduced by NNLO calculation

$$BR(K_{\rm L}^0 \to \pi^0 \nu \overline{\nu}) = (3.0 \pm 0.6) \times 10^{-11}$$
 (Buras et al. 04)

The error is almost purely parametric

Possibly the Cleanest SM test

- In $K \to \pi \nu \overline{\nu}$ The phase β derives from Z⁰ diagrams (Δ S=1) whereas in A(J/ ψ K_S) originates in the $B_d^0 \overline{B}_d^0$ box diagram (Δ B=2)
- Any non-minimal contribution to Z⁰ diagrams would be signalled by a violation of the relation:

$$(\sin 2\beta)_{K\to\pi\nu\overline{\nu}} = (\sin 2\beta)_{B\to J/\psi K_s}$$

- A deviation from the predicted rates of SM would be a clear indication of new physics
- Complementary programme to the high energy frontier:
 - When new physics will appear at the LHC, the rare decays may help to understand the nature of it

Beyond Standard Model Predictions

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) \times 10^{-11} \quad BR(K_{L}^{0} \to \pi^{0} \nu \bar{\nu}) \times 10^{-11}$$

SM

$$8.0 \pm 1.1$$

$$3.0 \pm 0.6$$

MFV

hep-ph/0310208

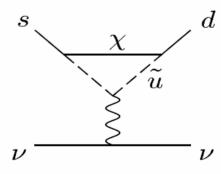
NP B697 133

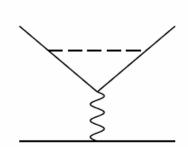
EEWP

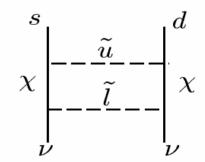
EDSQ

15

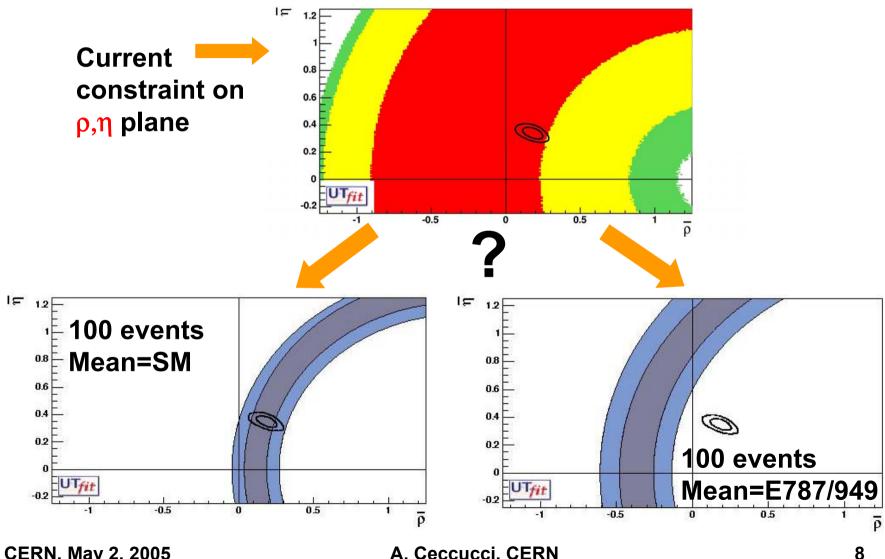
10


hep-ph/0407021


MSSM


40

50


hep-ph/0408142

Setting the bar for the next generation of $K^+ \rightarrow \pi^+ \nu \nu$ experiments

CERN, May 2, 2005

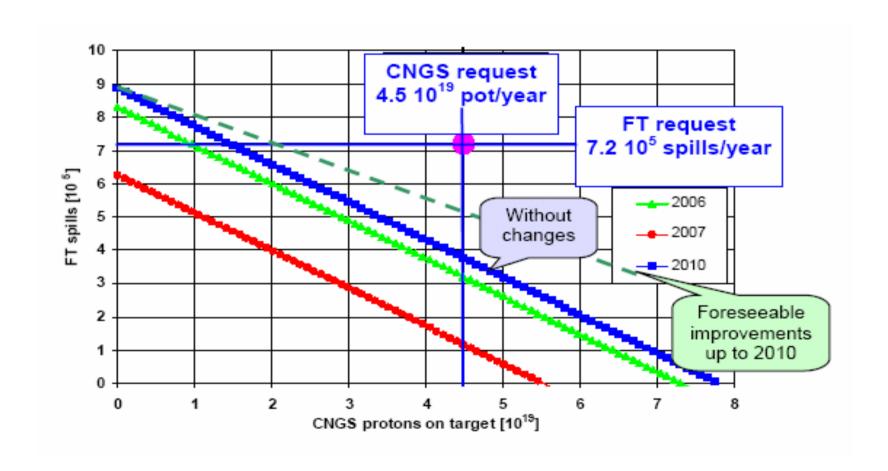
A. Ceccucci, CERN

Prospects in K rare decays

- $K_L^0 \rightarrow \pi^0 \nu \nu$
 - Large window of opportunity exists.
 - Upper limit is 4 order of magnitude from the SM prediction
 - Expect results from data collected by E391a (proposed SES~3 10-10)
 - Next experiment KOPIO@ BNL (currently under Review)
- $K^0_L \rightarrow \pi^0 ee(\mu\mu)$
 - Long distance contributions under better control
 - Measurement of K_S modes by NA48/1 has allowed SM prediction
 - K_S rates to be better measured (KLOE?)
 - Background limited (study time dep. Interference?)
 - 100-fold increase in kaon flux to be envisaged
- $K^+ \rightarrow \pi^+ \nu \nu$
 - The situation is different: 3 clean events are published
 - Experiment in agreement with SM
 - Next round of exp. need to collect O(100) events to be useful
 - Move from stopped to in flight experiments (NA48)

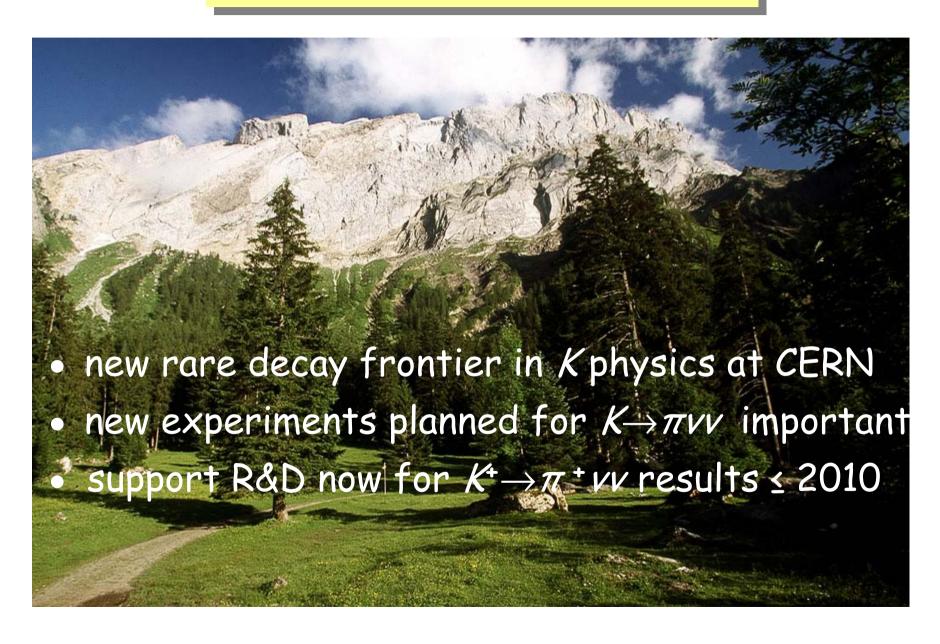
Prospects on $K^+ \rightarrow \pi^+ \nu \nu$

Decays at rest:


- Window of opportunity to accumulate more data at BNL until 2010 (before KOPIO data taking starts)
- Ideas to pursue stopped kaon decays in Japan
- Established technique...
- ...but hard to extrapolate to O(100) events
- Decays in flight
 - Large acceptances, good photon rejection
 - Separated beam: (FNAL-CKM cancelled)
 - Limited to about P_K<30 GeV/c
 - Un-separated beam: CERN-NA48/3
 - Limited by rate in beam trackers

Message from the CERN Director General to the staff (Jan 05)

- The top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007
- "...Meanwhile, the natural break we have in the fixed-target programme in 2005 is already allowing the community to develop a wellfocused programme for the future"


The possible Non-LHC Future Programme was reviewed by the SPSC in Villars (September 22-27, 2004)

SPS Protonomics

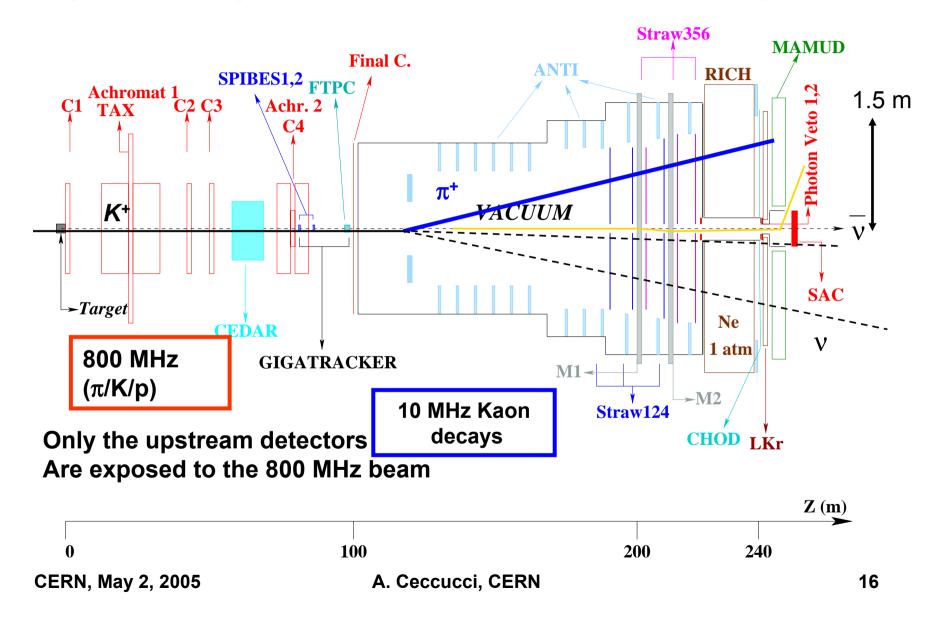
John Dainton Villars 2004 October 7th 2004 CERN seminar

SPSC@Villars

From the Villars Report...

CERN-SPSC-2005-010 SPSC-M-730 Febbruary 28, 2005

3.3 Flavour Physics


There is a strong physics case for pursuing an ambitious program of kaon physics at CERN, exploiting the high-energy proton beams available at the SPS for rare *K*-decay in-flight measurements. Building on its expertise in high-intensity neutral and charged kaon beams and on the outstanding physics achievements of the NA48, NA48/1 and NA48/2 experiments in the last decade, CERN should remain in the future a major laboratory for kaon physics at the sensitivity frontier.

The possibility of a precise measurement of the $K^{\dagger} \rightarrow \pi^{\dagger} \nu \nu$ transition is exciting. The goal is to detect more than 100 signal events over two years starting in 2009. The challenge is for experimental sensitivity to a K-decay BR of order 10^{-11} . A major upgrade of the present NA48/2 set-up would be necessary and the required R&D and detector developments should be supported. According to present studies this measurement appears globally competitive.

New high-intensity K⁺ beam for NA48/3 Available

Beam:	Present K12 (NA48/2)	New HI K+ <u>→ 200</u> 6	Factor wrt 2004
SPS protons per pulse on T10	1×10^{12}	3×10^{12}	3.0
Duty cycle (s./s.)	4.8 / 16.8		1.0
Solid angle (µsterad)	≈ 0.40	≈ 16	40
Av. K+momentum <p<sub>K> (GeV/c)</p<sub>	60	75	Total : 1.35
Mom. band RMS: (△p/p in %)	≈ 4	≈ 1	~0.25
Area at Gigatracker (cm²)	≈ 7.0	≈ 20	≈ 2.8
Total beam per pulse (x 10 ⁷) per Effective spill length MHz MHz/cm ² (gigatracker)	5.5 18 2.5	250 800 40	~45 (~27) ~45 (~27) ~16 (~10)
Eff. running time / yr (pulses)	$3* \times 10^5$	3.1 * 10 ⁵	1.0
K⁺ decays per year	1.0×10 ¹¹	4.0×10 ¹²	> ≈ 40

(Latest) NA48/3 Detector Layout

Time Schedule

- 2005
 - Launch R&D
 - Vacuum tests
 - Evaluate straw tracker
 - Complete realistic cost estimation
 - Complete analysis of beam-test data
 - Submit proposal to SPSC (P326 NOW!)
- · 2006-2008
 - Costruction, Installation and beam-tests
- 2009-2010
 - Data Taking

Conclusions

- We have found a fortunate combination where a compelling physics case can be addressed with an existing accelerator, employing the infrastructure (i.e. civil engineering, hardware, some sub-systems) of an existing experiment
- We stress that this initiative in not a mere continuation of NA48
- We are seeking new Collaborators!