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Low-energy theorem for ππ scattering

Some notation

〈πiπj out|πkπl in〉 = δijδklA(s, t , u)+δikδjlA(t , u, s)+δilδjkA(u, t , s)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=0(s, t , u) = 3A(s, t , u) + A(t , s, u) + A(u, t , s)

Low energy theorem Weinberg 1966

A(s, t , u) =
s − M2

π

F 2
π

+ O(p4) ⇒ T I=0 =
2s − M2

π

F 2
π

S wave projection (I=2)

t2
0 (s) =

2M2
π − s

32πF 2
π

a2
0 = t2

0 (4M2
π) =

−M2
π

16πF 2
π

= −0.045
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Higher orders

Higher order corrections are suppressed by O(p2/Λ2)
Λ ∼ 1 GeV ⇒ expected to be a few percent
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0 = 0.200 + O(p6) a2

0 = −0.0445 + O(p6)
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Higher orders

Higher order corrections are suppressed by O(p2/Λ2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 + O(p6) a2

0 = −0.0445 + O(p6)

The reason for the rather large correction in a0
0 is a chiral log

a0
0 =

7M2
π

32πF 2
π

[

1 +
9
2
`χ + . . .

]

a2
0 = −

M2
π

16πF 2
π

[

1 −
3
2
`χ + . . .

]

`χ =
M2

π

16π2F 2
π

ln
µ2

M2
π

Gasser and Leutwyler (84)
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a0

0 and a2
0

Output: the full ππ scattering amplitude below 0.8 GeV
Note: if a0

0, a2
0 are chosen within the universal band

the solution exist and is unique

Numerical solutions of the Roy equations
Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)
Ananthanarayan, GC, Gasser and Leutwyler (00)
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Numerical solutions
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Numerical solutions
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Numerical solutions
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Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a0
0, a2

0) is not mandatory

The freedom in the choice of the subtraction point
can be exploited to use the chiral expansion
where it converges best, i.e. below threshold
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

GC, Gasser and Leutwyler (01)
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

CHPT below threshold + Roy

a0
0 = 0.197 → 0.2195 → 0.220

10 · a2
0 = −0.402 → −0.446 → −0.444

GC, Gasser and Leutwyler (01)
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Final results

a0
0 = 0.220 ± 0.001 + 0.027∆r2 − 0.0017∆`3

10 · a2
0 = −0.444 ± 0.003 − 0.04∆r2 − 0.004∆`3

where

〈r2〉s = 0.61fm2(1 + ∆r2) ¯̀
3 = 2.9 + ∆`3
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Final results

a0
0 = 0.220 ± 0.001 + 0.027∆r2 − 0.0017∆`3

10 · a2
0 = −0.444 ± 0.003 − 0.04∆r2 − 0.004∆`3

where

〈r2〉s = 0.61fm2(1 + ∆r2) ¯̀
3 = 2.9 + ∆`3

Adding errors in quadrature [∆r2 = 6.5%, ∆`3 = 2.4]

a0
0 = 0.220 ± 0.005

10 · a2
0 = −0.444 ± 0.01

a0
0 − a2

0 = 0.265 ± 0.004

Pelaez and Yndurain have criticized these results
Claim 2: our calculation for 〈r 2〉s is not correct (Y, 04)
The criticism has been answered (Ananthanarayan et al. 04)
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Sensitivity to the quark condensate
The constant ¯̀

3 appears in the chiral expansion
of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π
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3 + O(m̂2)

]

m̂ =
mu + md

2
B = −

1
F 2 〈0|q̄q|0〉
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Sensitivity to the quark condensate
The constant ¯̀

3 appears in the chiral expansion
of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π

¯̀
3 + O(m̂2)

]

m̂ =
mu + md

2
B = −

1
F 2 〈0|q̄q|0〉

Its size tells us what fraction of the pion mass is given by the
Gell-Mann–Oakes–Renner term

M2
GMOR ≡ 2Bm̂
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Sensitivity to the quark condensate
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Conclusions

I The high precision in the prediction for the
scattering lengths is obtained through a combined use of
dispersive methods and chiral symmetry

I The prediction relies on the assumption that the
Gell-Mann–Oakes–Renner term dominates the pion mass

I This assumption has been confirmed by the
E865 data on Ke4 decays

I Increasing the precision of the scattering length
measurement will improve our knowledge of the
QCD vacuum and will allow sensitive tests with
lattice calculations
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