The chiral prediction for $a_{0}^{0}-a_{0}^{2}$

Gilberto Colangelo
\boldsymbol{u}^{b}
b
BERN
CERN, May 2, 2005

Outline

Low energy theorems, chiral expansion

Outline

Low energy theorems, chiral expansion

Dispersive methods
Roy equations
Chiral symmetry + dispersive methods

Outline

Low energy theorems, chiral expansion

Dispersive methods
Roy equations
Chiral symmetry + dispersive methods

What do we learn?

Low-energy theorem for $\pi \pi$ scattering

Some notation

$$
\left.\left\langle\pi^{i} \pi^{j} \text { out }\right| \pi^{k} \pi^{\prime} \text { in }\right\rangle=\delta^{i j} \delta^{k l} A(s, t, u)+\delta^{\text {ik }} \delta^{j l} A(t, u, s)+\delta^{i l} \delta^{j k} A(u, t, s)
$$

Low-energy theorem for $\pi \pi$ scattering

Some notation
$\left\langle\pi^{i} \pi^{j}\right.$ out $| \pi^{k} \pi^{l}$ in $\rangle=\delta^{i j} \delta^{k l} A(s, t, u)+\delta^{i k} \delta^{j l} A(t, u, s)+\delta^{i l} \delta^{j k} A(u, t, s)$
All physical amplitudes can be expressed in terms of $A(s, t, u)$

$$
T^{l=0}(s, t, u)=3 A(s, t, u)+A(t, s, u)+A(u, t, s)
$$

Low-energy theorem for $\pi \pi$ scattering

Some notation
$\left\langle\pi^{i} \pi^{j}\right.$ out $| \pi^{k} \pi^{l}$ in $\rangle=\delta^{i j} \delta^{k l} A(s, t, u)+\delta^{i k} \delta^{j l} A(t, u, s)+\delta^{i l} \delta^{j k} A(u, t, s)$
All physical amplitudes can be expressed in terms of $A(s, t, u)$

$$
T^{l=0}(s, t, u)=3 A(s, t, u)+A(t, s, u)+A(u, t, s)
$$

Low energy theorem
Weinberg 1966

$$
A(s, t, u)=\frac{s-M_{\pi}^{2}}{F_{\pi}^{2}}+\mathcal{O}\left(p^{4}\right) \quad \Rightarrow \quad T^{l=0}=\frac{2 s-M_{\pi}^{2}}{F_{\pi}^{2}}
$$

Low-energy theorem for $\pi \pi$ scattering

Some notation
$\left\langle\pi^{i} \pi^{j}\right.$ out $| \pi^{k} \pi^{l}$ in $\rangle=\delta^{i j} \delta^{k l} A(s, t, u)+\delta^{i k} \delta^{j l} A(t, u, s)+\delta^{i l} \delta^{j k} A(u, t, s)$
All physical amplitudes can be expressed in terms of $A(s, t, u)$

$$
T^{l=0}(s, t, u)=3 A(s, t, u)+A(t, s, u)+A(u, t, s)
$$

Low energy theorem
Weinberg 1966

$$
\begin{equation*}
A(s, t, u)=\frac{s-M_{\pi}^{2}}{F_{\pi}^{2}}+\mathcal{O}\left(p^{4}\right) \quad \Rightarrow \quad T^{l=0}=\frac{2 s-M_{\pi}^{2}}{F_{\pi}^{2}} \tag{l=0}
\end{equation*}
$$

S wave projection

$$
t_{0}^{0}(s)=\frac{2 s-M_{\pi}^{2}}{32 \pi F_{\pi}^{2}} \quad a_{0}^{0}=t_{0}^{0}\left(4 M_{\pi}^{2}\right)=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}=0.16
$$

Low-energy theorem for $\pi \pi$ scattering

Some notation
$\left\langle\pi^{i} \pi^{j}\right.$ out $| \pi^{k} \pi^{l}$ in $\rangle=\delta^{i j} \delta^{k l} A(s, t, u)+\delta^{i k} \delta^{j l} A(t, u, s)+\delta^{i l} \delta^{j k} A(u, t, s)$
All physical amplitudes can be expressed in terms of $A(s, t, u)$

$$
T^{l=0}(s, t, u)=3 A(s, t, u)+A(t, s, u)+A(u, t, s)
$$

Low energy theorem
Weinberg 1966

$$
\begin{equation*}
A(s, t, u)=\frac{s-M_{\pi}^{2}}{F_{\pi}^{2}}+\mathcal{O}\left(p^{4}\right) \quad \Rightarrow \quad T^{l=0}=\frac{2 s-M_{\pi}^{2}}{F_{\pi}^{2}} \tag{l=2}
\end{equation*}
$$

S wave projection

$$
t_{0}^{2}(s)=\frac{2 M_{\pi}^{2}-s}{32 \pi F_{\pi}^{2}} \quad a_{0}^{2}=t_{0}^{2}\left(4 M_{\pi}^{2}\right)=\frac{-M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}=-0.045
$$

Higher orders

Higher order corrections are suppressed by $\mathcal{O}\left(p^{2} / \Lambda^{2}\right)$
$\Lambda \sim 1 \mathrm{GeV} \Rightarrow$ expected to be a few percent

$$
a_{0}^{0}=0.200+\mathcal{O}\left(p^{6}\right) \quad a_{0}^{2}=-0.0445+\mathcal{O}\left(p^{6}\right)
$$

Gasser and Leutwyler (84)

Higher orders

Higher order corrections are suppressed by $\mathcal{O}\left(p^{2} / \Lambda^{2}\right)$
$\Lambda \sim 1 \mathrm{GeV} \Rightarrow$ expected to be a few percent

$$
a_{0}^{0}=0.200+\mathcal{O}\left(p^{6}\right) \quad a_{0}^{2}=-0.0445+\mathcal{O}\left(p^{6}\right)
$$

The reason for the rather large correction in a_{0}^{0} is a chiral log

$$
a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}\left[1+\frac{9}{2} \ell_{\chi}+\ldots\right] \quad a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}\left[1-\frac{3}{2} \ell_{\chi}+\ldots\right]
$$

$$
\ell_{\chi}=\frac{M_{\pi}^{2}}{16 \pi^{2} F_{\pi}^{2}} \ln \frac{\mu^{2}}{M_{\pi}^{2}}
$$

Gasser and Leutwyler (84)

Higher orders

Higher orders

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV two subtraction constants, e.g. a_{0}^{0} and a_{0}^{2}

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV two subtraction constants, e.g. a_{0}^{0} and a_{0}^{2}
Output: the full $\pi \pi$ scattering amplitude below 0.8 GeV Note: if a_{0}^{0}, a_{0}^{2} are chosen within the universal band the solution exist and is unique

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV two subtraction constants, e.g. a_{0}^{0} and a_{0}^{2}
Output: the full $\pi \pi$ scattering amplitude below 0.8 GeV Note: if a_{0}^{0}, a_{0}^{2} are chosen within the universal band the solution exist and is unique

Numerical solutions of the Roy equations Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s) Ananthanarayan, GC, Gasser and Leutwyler (00)

Numerical solutions

Numerical solutions

Numerical solutions

Numerical solutions

Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold $\left(a_{0}^{0}, a_{0}^{2}\right)$ is not mandatory

Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a_{0}^{0}, a_{0}^{2}) is not mandatory
The freedom in the choice of the subtraction point can be exploited to use the chiral expansion where it converges best, i.e. below threshold

Combining CHPT and dispersive methods

Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved if CHPT is used only below threshold

CHPT at threshold

$$
\begin{array}{cccc}
a_{0}^{0}= & 0.159 & \rightarrow & 0.200 \\
10 \cdot a_{0}^{2}= & -0.454 & \rightarrow & -0.216 \\
& p^{2} & p^{4} & p^{6}
\end{array}
$$

GC, Gasser and Leutwyler (01)

Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved if CHPT is used only below threshold

CHPT at threshold

$$
\begin{array}{cccc}
a_{0}^{0}= & 0.159 & \rightarrow & 0.200 \\
10 \cdot a_{0}^{2}= & -0.454 & \rightarrow & -0.216 \\
& p^{2} & p^{4} & p^{6}
\end{array}
$$

CHPT below threshold + Roy

$$
\begin{aligned}
a_{0}^{0} & =0.197 \rightarrow 0.2195 \rightarrow 0.220 \\
10 \cdot a_{0}^{2} & =-0.402 \rightarrow-0.446 \rightarrow-0.444
\end{aligned}
$$

GC, Gasser and Leutwyler (01)

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Adding errors in quadrature

$$
\left[\Delta_{r^{2}}=6.5 \%, \Delta \ell_{3}=2.4\right]
$$

$$
\begin{array}{rlr}
a_{0}^{0} & =0.220 \pm 0.005 \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.01 \\
a_{0}^{0}-a_{0}^{2} & =0.265 \pm 0.004
\end{array}
$$

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Adding errors in quadrature

$$
\left[\Delta_{r^{2}}=6.5 \%, \Delta \ell_{3}=2.4\right]
$$

$$
\begin{array}{rlr}
a_{0}^{0} & =0.220 \pm 0.005 \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.01 \\
a_{0}^{0}-a_{0}^{2} & =0.265 \pm 0.004
\end{array}
$$

Pelaez and Yndurain have criticized these results
Claim 1: our input above 1.4 GeV is not correct (PY 03)
The criticism has been answered (Caprini et al. 03)

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Adding errors in quadrature

$$
\left[\Delta_{r^{2}}=6.5 \%, \Delta \ell_{3}=2.4\right]
$$

$$
\begin{array}{rlr}
a_{0}^{0} & =0.220 \pm 0.005 \\
10 \cdot a_{0}^{2} & = & -0.444 \pm 0.01 \\
a_{0}^{0}-a_{0}^{2} & =0.265 \pm 0.004
\end{array}
$$

Pelaez and Yndurain have criticized these results
Claim 2: our calculation for $\left\langle r^{2}\right\rangle_{s}$ is not correct (Y, 04)
The criticism has been answered (Ananthanarayan et al. 04)

Sensitivity to the quark condensate

The constant $\bar{\ell}_{3}$ appears in the chiral expansion of the pion mass

$$
\begin{aligned}
& M_{\pi}^{2}=2 B \hat{m}\left[1+\frac{2 B \hat{m}}{16 \pi F_{\pi}^{2}} \bar{l}_{3}+\mathcal{O}\left(\hat{m}^{2}\right)\right] \\
& \hat{m}=\frac{m_{u}+m_{d}}{2} \quad B=-\frac{1}{F^{2}}\langle 0| \bar{q} q|0\rangle
\end{aligned}
$$

Sensitivity to the quark condensate

The constant $\bar{\ell}_{3}$ appears in the chiral expansion of the pion mass

$$
\begin{aligned}
& M_{\pi}^{2}=2 B \hat{m}\left[1+\frac{2 B \hat{m}}{16 \pi F_{\pi}^{2}} \bar{l}_{3}+\mathcal{O}\left(\hat{m}^{2}\right)\right] \\
& \hat{m}=\frac{m_{u}+m_{d}}{2} \quad B=-\frac{1}{F^{2}}\langle 0| \bar{q} q|0\rangle
\end{aligned}
$$

Its size tells us what fraction of the pion mass is given by the Gell-Mann-Oakes-Renner term

$$
M_{\mathrm{GMOR}}^{2} \equiv 2 B \hat{m}
$$

Sensitivity to the quark condensate

The E865 data on $K_{\ell 4}$ imply that

$$
M_{\mathrm{GMOR}}>94 \% M_{\pi}
$$

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry
- The prediction relies on the assumption that the Gell-Mann-Oakes-Renner term dominates the pion mass

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry
- The prediction relies on the assumption that the Gell-Mann-Oakes-Renner term dominates the pion mass
- This assumption has been confirmed by the E865 data on $K_{e 4}$ decays

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry
- The prediction relies on the assumption that the Gell-Mann-Oakes-Renner term dominates the pion mass
- This assumption has been confirmed by the E865 data on $K_{e 4}$ decays
- Increasing the precision of the scattering length measurement will improve our knowledge of the QCD vacuum and will allow sensitive tests with lattice calculations

