Measurements of direct CP-violating asymmetries in K[±] → 3π decays in NA48/2

M.Sozzi

For the NA48/2 collaboration

4th NA48 Kaon physics mini-workshop - CERN - May 2nd 2005

Outline

- Asymmetries in $K^{\pm} \rightarrow 3\pi$ decays
- The NA48/2 beam and experiment
- The measurement method
- Preliminary result (2003 data)
- Other measurements and perspectives

Rationale

Charged K: direct CP violation only

• Differences between CP-conjugate particles: most "straightforward" CP effect...

... not the most fashionable for connecting to the parameters of the underlying fundamental theory (e.g. SM)

• A priori larger effects than in $K^0(\epsilon'/\epsilon)$ could be expected

K[±] asymmetries: status

EXPERIMENT:

Few measurements in the '70s with rather limited statistics (few with both K charges in the same apparatus)

Some more recent measurements as byproducts

Larger statistics require adequate control of systematics: cancellations

No other experiment has simultaneous K+/K- beams

K[±] asymmetries: predictions

The "poor experimentalist's view"

Rate asymmetries (little - not zero - sensitivity in NA48/2) very suppressed

SM contribution now agreed to be rather tiny several theoretical estimates, differing by \approx 1 order of magnitude but Ag ~ 10^{-5} or below (actually good!)

Large uncertainties (unknown phases) especially for "neutral" mode ($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$)

Beyond SM some enhancements seem possible. Few explicit estimates, though. D'Ambrosio, Isidori, Martinelli: chromo-magnetic operator in SUSY plus K⁰

constraints roughly limits Ag < 1.10⁻⁴

The NA48/2 approach

NA48/2 main goal:

- Measure linear slope asymmetries "charged" and "neutral" modes with accuracies $\delta A_g < 2.2 \cdot 10^{-4}$ and $\delta A_g < 3.5 \cdot 10^{-4}$ respectively
- Required statistics: >2·10⁹ in "charged" mode and >10⁸ in "neutral" mode

- Two <u>simultaneous</u> K⁺ and K⁻ beams, <u>superimposed</u> in space, with narrow momentum spectra
- Detect asymmetry only from slopes of ratios of normalized u distributions
- Equalize averaged K⁺ and K⁻ acceptances by frequently alternating polarities of relevant magnets

The NA48 detector

Main detector components:

- Magnetic spectrometer (4 DCHs): 4 views: redundancy \Rightarrow efficiency $\sigma_p/p = 1.0\% + 0.044\% p [GeV/c]$
- Hodoscope fast trigger precise time measurement (150ps)
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous $\sigma_E/E = 3.2\%/\sqrt{E} + 9\%/E + 0.42\%$ [GeV] e/π discrimination
- Hadron calorimeter, photon vetos, muon veto counters

NA48/2 CP asymmetries

K mini-workshop CERN 2.5.2005

Data taking: completed

The experimental method

Project Dalitz plot onto u-axis

Neglect asymmetries in quadratic slopes h, k

If acceptance is equal for K⁺ and K⁻

 $\mathsf{R}(\mathsf{u}) = \mathsf{N}^+(\mathsf{u})/\mathsf{N}^-(\mathsf{u}) \approx$

≈ n·(1+<mark>g</mark>₊u)/(1+g_u) ≈

≈ n·(1+ <mark>∆g</mark> u)

 $A_g = \Delta g/2g$ can be extracted from a linear fit of the ratio of u-distributions

Instrumental asymmetries:

- 1. Detector acceptance asymmetry
- 2. Time variation of detector response
- 3. Charge-dependent beam optics
- 4. Time variation of beams' properties
- 5. Spurious magnetic fields
- 6. Charge-asymmetric interactions

Any imperfection has to be <u>charge-asymmetric</u> AND <u>non-flat</u> <u>in u</u> to induce an effect

Addressing the acceptance

- Beam line (achromat) polarity (A) reversed on weekly basis
- Spectrometer magnet polarity (B) reversed on daily basis

M. Sozzi

Acceptance cancellation within supersample

M.S. Sozzi

More cancellations

<u>Double ratio</u> cancellation of <u>global time instabilities</u> (rate effects, *simultaneous beams*): K+ and K- recorded at the same time

Double ratio cancellation of **beam geometry difference** effects: K+ and K- both passing through upper (lower) beam line

Double ratio cancellation of (possibly large) **detector asymmetry** effects: K+ and K- both illuminating same detector regions

Fit with **quadruple ratio**:

$$R = R_{US} \times R_{UJ} \times R_{DS} \times R_{DJ}$$

The fit result is sensitive only to time variation of left-right asymmetries of experimental conditions on a time-scale of ~1 subsample

Normalization Slope difference

 $\Delta g = 2g A_g \approx -0.43 A_g$

$$\delta A_g < 2.2 \cdot 10^{-4} \leftrightarrow \delta \Delta g < 0.9 \cdot 10^{-4}$$

Simulation

Robust technique implies that **ANALYSIS DOES NOT RELY ON MONTE CARLO SIMULATION** of detector imperfections (asymmetries)

Still, a full GEANT-based MC is used to study the sensitivity to different systematic effects

Statistics comparable to data

Local detector imperfections simulated as well as their time evolution

Example of data/MC agreement Average beam positions at first chamber

Systematics: beams

Time variations of beam geometry

Acceptance largely defined by central hole edge (12 cm radius)

Acceptance cut defined by (larger) **"virtual pipe"** centered on averaged beam positions as a function of <u>charge</u>, <u>time</u> and <u>K momentum</u>

Systematics: spectrometer

Time variations of spectrometer geometry

Alignment fine tuning by equalizing reconstructed average K⁺,K⁻ masses

Sensitivity to DCH4 horizontal shift: $\Delta M/\Delta x \approx 1.5 \text{ keV/}\mu m$

Effect of <u>imperfect inversion of</u> <u>spectrometer field</u> cancels in double ratio (simultaneous beams)

Momentum scale adjusted anyway by constraining average reconstructed K masses to PDG value

Sensitivity to 10^{-3} error on field integral: $\Delta M \approx 100 \text{ keV}$

Systematics: trigger

L1 trigger (2 hodoscope hits): stable inefficiency $\approx 0.7 \cdot 10^{-3}$ charge-symmetric, flat in u: <u>no correction</u>

L2 trigger (online vertex reconstruction on DCH data): time-varying inefficiency (local DCH inefficiencies) 0.2% to 1.8%, charge-symmetric and flat in u within measurement precision (control triggers): u-dependent <u>correction</u> (geometry-dependent part only)

Correction introduces *statistical error* from control sample

NA48/2 CP asymmetries

More systematics...

- Accuracy in time-tracking of beam movements, changes in beam widths
- Inhomogeneities in spectrometer misalignment, different misalignments
- Effect of **stray magnetic fields**: Earth's magnetic field, vacuum tank magnetization (measured): 10⁻⁴ of spectrometer kick
- Coupling of π decay to other effects
- Accidental (pile-up) effects
- Charge-asymmetric π interactions
- Track charge mis-identification
- Fitting region and method sensitivity

Time stability

Result and errors

Combined result: ∆g×10 ⁴ (3 independent analysis)			Conservative estimate of systematic errors	Effect on ∆g×10 ⁴
L2 trigger systematics included		ics included	Acceptance, beam geometry	0.5
Sample	Raw	Corrected for L2 eff	Spectrometer alignment	0.1
SS0	0.0 ± 1.5	0.5 ± 2.4	Spectrometer magnet field	0.1
			$\pi \rightarrow \mu \nu$ decay	0.4
551	0.9 ± 2.0	2.2 ± 2.2	U calculation and fitting	0.5
SS2	-2.8 ± 2.2	-3.0 ± 2.5	Accidental activity	0.3
SS3	2.0 ± 3.4	-2.6 ± 3.9	Syst. errors of statistical nature	
Total	-0.2 ± 1.0	-0.2 ± 1.3	Trigger efficiency: L2	0.8
γ^2	2.2/3	3.2/3	Trigger efficiency: L1	0.4
N			Total systematic error	1.3

Result stability

Preliminary result: 2003 data

 $A_g = (0.5 \pm 2.4_{stat.} \pm 2.1_{stat.(trig.)} \pm 2.1_{syst.}) \times 10^{-4}$

 $A_{q} = (0.5 \pm 3.8) \times 10^{-4}$

- Preliminary result with conservative systematic errors
- Extrapolated final statistical error (2003+2004): $\delta A_g = 1.6 \times 10^{-4}$
- 2004 data: expect smaller systematic effects (more frequent polarity alternation, better beam steering)

"Neutral" mode asymmetry $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

- u can be reconstructed with LKr calorimeter only
- Statistics analyzed: **28 × 10⁶ events** (1 month of 2003)
- Higher statistical power
- Statistical error with analyzed data: δA_{g(stat)}= 2.2 × 10⁻⁴
- Extrapolation to 2003+2004 data: $\delta A_{g(stat)} = 1.3 \times 10^{-4}$
- Possibly larger systematic errors

Experiment

NA48/2 asymmetry highlights

- Unprecedented statistics
- First experiment with *simultaneous* K+/K- beams: robust cancellations of systematics
- Both 3π decay modes available: *comparable* statistical power *complementary* and uncorrelated systematics ("charged" mode uses only magnetic spectrometer, "neutral" mode can use almost exclusively EM calorimeter)
- Almost all charged K decay modes collected

K[±] asymmetries: questions

More explicit investigation of other models beyond SM?

Are there other possible enhancements mechanisms?

NA48/2 has the potential to close the very wide gap between experimental limits and the edges of the explicit predictions *(significance of a non-zero result...):*

Can this measurement rule out some parts of parameter space?

Can the connection between the two 3π decay modes be exploited?

Can the connection with K0 (ϵ'/ϵ) be exploited?

Are there other interesting asymmetries (in these or other decay modes)?

- Preliminary NA48/2 result (2003 data) on direct CP-violating charge asymmetry in $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$: $A_g = (0.5 \pm 2.4_{stat.} \pm 2.1_{stat.(trig.)} \pm 2.1_{syst.}) \times 10^{-4}$
- 10 times better precision than previous measurements
- Room to decrease systematic error (trigger efficiency)
- 2004 data contain another 2×10⁹ charged events, with higher quality
- Design goal within reach
- More detector information (beam spectrometer) available
- Neutral mode asymmetry: complementary, comparable sensitivity

SPARE SLIDES

NA48/2 CP asymmetries

K mini-workshop, CERN 2.5.2005

Experimental status

<u>"Charged" mode K[±]→3π[±]</u>

- Ford et al. (1970) at BNL A_g=(-7.0±5.3)·10⁻³ Statistics: 3.2M K[±]
- HyperCP prelim. (2000) at FNAL A_g=(2.2±1.5±3.7)·10⁻³ Statistics: 390M K⁺, 1.6M K Preliminary, published as PhD thesis

"Neutral" mode $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

Smith et al. (1975) at CERN-PS A_g=(1.9±12.3)·10⁻³

Statistics: 28000 K[±]

TNF (2004) at IHEP Protvino
 A_a=(0.2±1.9)·10⁻³

```
Statistics: 0.52M K<sup>±</sup>
```

Theoretical predictions of A_q

	L.Maiani, N.Paver '95	(2.3±0.6)x10 ⁻⁶
	A. Bel'kov '95	<4x10 ⁻⁴
Standard	G.D'Ambrosio, G.Isidori '98	<10 ⁻⁵
Model	E.Shabalin '01	<3x10 ⁻⁵
	E.Gamiz, J.Prades, I.Scimemi '03	(-2.4±1.2)x10 ⁻⁵
	E.Shabalin '05 (La Thuile'05)	<8x10 ⁻⁵
Beyond	G.D'Ambrosio, G.Isidori, G.Martinelli	~10 ⁻⁴
SM	E.Shabalin '98 [Weinberg model of extended Higgs doublet]	~4x10 ⁻⁴
	I.Scimemi '04	>3x10 ⁻⁵