Hyperon decays

Cristina Lazzeroni University of Cambridge

> **KMW 2005** CERN, 2nd May 2005

The NA48 simultaneous K_S and K_L beams

 $400\,{\rm GeV/c}$ secondary proton beam from the SPS T10 target, production angle of 4.2 mrad

 K_S and neutral hyperons decays: 48 h of data taking in 1999, 89 days in 2002

```
\approx 200 \times intensity as \operatorname{Re}(\varepsilon'/\varepsilon)
```

$\Xi^0 \to \Lambda \gamma \ decay \ asymmetry$

1999 High Intensity run : 730 $\Xi^0 \to \Lambda \gamma$ events with background of 58.2 \pm 7.8 events $BR(\Xi^0 \to \Lambda \gamma) = (1.16 \pm 0.05_{stat} \pm 0.06_{syst}) \times 10^{-3}$

The MC and the technique were first tested measuring the decay asimmetry in the decay $\Xi^0 \to \Lambda \pi^0$

$\Xi^0 \to \Lambda \gamma \ decay \ asymmetry \ (cont.)$

Data were compared with an isotropic MC distribution:

 $\alpha(\Xi^0 \to \Lambda \gamma) = -0.78 \pm 0.18_{stat} \pm 0.06_{syst}$

Different predictions: - pole models, χPT (satysfying the Hara theorem) \rightarrow negative - vector meson dominance models, quark models \rightarrow positive

First clear evidence for negative asymmetry

Phys. Lett. B584:251-259, 2004

Ξ^0 in 2002

$\approx 2\times 10^9~\Xi^0$ decays in fiducial volume

From minimum bias trigger (down-scaled by 35):

Used for normalisation purposes

 Ξ^0 lifetime measurement using $\Xi^0 \to \Lambda \pi^0$ in progress

 $\Xi^0 \to \Sigma^+ e^- \nu \ decays$

Reconstruct $\Sigma^+ \to p\pi^0$ and require additional electron

 $\Xi^0 \to \Sigma^+ l^- \nu$ decays are only source of Σ^+ in the neutral beam

6238 signal events, 2.4% background

Experimental challenge

- Proton takes most of the hyperon momentum
 ⇒ proton line-of-flight close to beam pipe
 - \Rightarrow low acceptance, sensitive
 - to detector geometry
 - \Rightarrow accurate MC needed
- Triggered by complex algorithm to exclude unwanted K_S and Λ decays (use minimum bias trigger to measure trigger efficiency)

 $BR(\Xi^0 \to \Sigma^+ e^- \nu)$

Preliminary result on 6238 events:

 $BR(\Xi^0 \to \Sigma^+ e^- \nu) = (2.51 \pm 0.03_{stat} \pm 0.11_{syst}) \times 10^{-4}$

Systematics:

Source	$\sigma_{syst}/{ m BR}~(\%)$
Trigger efficiency	± 2.6
Detector acceptance	± 3.0
Ξ^0 form factors g_1, f_2	± 1.0
Ξ^0 polarisation	± 1.0
Ξ^0 lifetime	± 0.5
Total systematics	± 4.2
Statistical uncertainty	± 1.2

For comparison: BR= $(2.71 \pm 0.38) \times 10^{-4}$ KTeV published (176 events, 1999)

$|V_{us}|$ from Ξ^0 beta decays

 Ξ^0 beta decay similar to neutron beta decay: $\Xi^0(uss) \rightarrow \Sigma^+(uus)e^-\nu \qquad n(udd) \rightarrow p(uud)e^-\nu$

Decay rate :

$$\Gamma = G_F^2 |V_{us}|^2 \frac{\Delta m^5}{60\pi^3} \left[(1 - \frac{3}{2}\beta)(|f_1|^2 + 3|g_1|^2) \right]$$

 $\Delta m = m_{\Xi^0} - m_{\Sigma^+}, \ \beta = \Delta m / m_{\Xi^0} = 0.095$ (slightly modified by radiative corrections and q^2 dependence)

- f_1 protected by Ademollo-Gatto theorem, $f_1 \approx 1$
- $g_1(\Xi^0) = g_1(neutron)$ if SU(3) symmetry \Rightarrow to be measured experimentally
- assume $g_2 = 0$ (non-existing second class currents)

$|V_{us}|$ from Ξ^0 beta decays (cont.)

Using Ξ^0 lifetime from PDG: $\Gamma(\Xi^0 \to \Sigma^+ e^- \nu) = (8.66 \pm 0.38_{exp} \pm 0.27_{lifetime}) \times 10^5 s^{-1}$

Using $g_1/f_1 = 1.32^{+0.21}_{-0.17_{stat}} \pm 0.05_{syst}$ (KTeV 2000, 494 events), and assuming $f_1 = 1$:

$$|V_{us}| = 0.214 \pm 0.006^{+0.030}_{-0.025g_1/f_1}$$
 (preliminary)

(neutron decay + SU(3): $g_1/f_1 = 1.267 \pm 0.0035$, not used here)

→ Agreement with SM expectation of $|V_{us}| = 0.2274 \pm 0.0021$ → Uncertainty from form factor g_1 still too large precise measurement of g_1/f_1 from same data

$$\Xi^0 \to \Sigma^+ \mu^- \nu$$

First clear evidence for the channel $\Xi^0 \to \Sigma^+ \mu^- \nu$

 \approx 45000 events

Conclusions

- Published result on decay asymmetry: $\alpha(\Xi^0 \to \Lambda \gamma) = -0.78 \pm 0.18_{stat} \pm 0.06_{syst}$
- Preliminary results:

 $|V_{us}| = 0.214 \pm 0.006^{+0.030}_{-0.025g_1/f_1}$ BR($\Xi^0 \rightarrow \Sigma^+ e^- \nu$)=(2.51 ± 0.03_{stat} ± 0.11_{syst}) × 10⁻⁴

- First clear signal for $\Xi^0 \to \Sigma^+ \mu^- \nu$
- More results to come soon:
- Ξ^0 beta-decay form factors
- Ξ^0 lifetime
- improved results on $\Xi^0 \to \Lambda \gamma$ decay asymmetry

_

The hyperon trigger

 Ξ^0 beta decays : cut on momentum ratio Ξ^0 radiative decays : cut against low P_t events

$\Xi^0 \to \Lambda \gamma$ branching ratio

The systematic uncertainty is dominated by the error on the asymmetry measurement