Some ideas on radiative $K_{\ell 3}$ decays

Bastian Kubis

Kaon Mini Workshop CERN, 2/5/2005

Outline

- Summary on $K^0_{e3\gamma}$ [see last year's workshop]
- What happens for $K_{e3\gamma}^+$?
- And what about $K_{\mu 3\gamma}$?
- T-odd correlations in $K_{\ell 3\gamma}$
- Conclusions

J. Gasser, B. Kubis, N. Paver, M. Verbeni, Eur. Phys. J. C40 (2005) 205 Some ideas on radiative $K_{\ell 3}$ decays p.3

Result for $R = \Gamma(K^0_{e3\gamma})/\Gamma(K^0_{e3})$

 $R = (0.96 \pm 0.01) \times 10^{-2}$

- dependence on coupling constants (G_F, V_{us}) cancels
- *f*₊ dependence extremely suppressed
- SD terms very small
- error dominated by radiative corrections

J. Gasser, B. Kubis, N. Paver, M. Verbeni, Eur. Phys. J. C40 (2005) 205 Some ideas on radiative $K_{\ell 3}$ decays p.4

Structure dependent terms in $d\Gamma/dE^*_{\gamma}$

$$\frac{d\Gamma}{dE_{\gamma}^{*}} \approx \frac{d\Gamma_{\rm IB}}{dE_{\gamma}^{*}} + \sum_{i=1}^{4} \left(\left\langle V_{i} \right\rangle \frac{d\Gamma_{V_{i}}}{dE_{\gamma}^{*}} + \left\langle A_{i} \right\rangle \frac{d\Gamma_{A_{i}}}{dE_{\gamma}^{*}} \right) \approx \frac{d\Gamma_{\rm IB}}{dE_{\gamma}^{*}} + \left\langle X \right\rangle f(E_{\gamma})$$

Some ideas on radiative $K_{\ell 3}$ decays

- $\langle V_i \rangle$, $\langle A_i \rangle$ phase-space averages of structure functions
- $d\Gamma_{V_i}/dE_{\gamma}^*$, $d\Gamma_{A_i}/dE_{\gamma}^*$ kinematical functions (figure!)
- $\Rightarrow \ d\Gamma/dE_{\gamma}^{*} \text{ is essentially sensitive} \\ \text{to one effective coupling}$

 $\langle X \rangle \approx \langle V_1 \rangle + 0.4 \langle V_2 \rangle + 0.4 \langle A_1 \rangle$

Compare KTeV result to ChPT prediction:

- KTeV measures $C' \cong \langle X \rangle$
- KTeV: $C' = -2.5^{+1.5}_{-1.0} \pm 1.5$
- ChPT: $C' = -1.6 \pm 0.4$
- \Rightarrow good numerical agreement within 1- σ error
- ⇒ serious constraints on SD terms feasible !

Some ideas on radiative $K_{\ell 3}$ decays

Some necessary comments on this comparison

KTeV analysis relies on certain theory conventions (\neq ours):

H.W. Fearing, E. Fischbach, J. Smith, Phys. Rev. D2 (1970) 542

- IB–SD separation leads to singular SD terms $\propto (qW)^2/p_{\pi}q$
- their basis for SD does not single out m_e^2 suppressed terms \Rightarrow simultaneous shifts in all structure functions not measurable $\Rightarrow C'$ strictly speaking not measurable
- "soft kaon approximation" leads to a wrong interpretation of the effective coupling $\langle X \rangle$
- \Rightarrow should be done better!

• compare:

- still similar structure: f_+ , $V_{1/2}$, $A_{1/2}$ important; f_- , V_3 , A_3 suppressed by m_e^2 , V_4 , A_4 chirally suppressed
- similar precision for $\Gamma(K_{e3\gamma}^+)/\Gamma(K_{e3}^+)$ as for $\Gamma(K_{e3\gamma}^0)/\Gamma(K_{e3}^0)$: f_+ -dependence suppressed, SD terms small \Rightarrow reduce theoretical uncertainty to 1% level

Some ideas on radiative $K_{\ell 3}$ decays

Changes in the structure dependent terms

 \Rightarrow much higher sensitivity to axial anomaly effects in $K_{e3\gamma}^+$

 \Rightarrow V_1 and A_1 difficult to disentangle experimentally though Some ideas on radiative $K_{\ell 3}$ decays

- bremsstrahlung has no near-collinear singularity
- structure dependent terms potentially more important?
 ⇒ investigate!
- but: no m_{ℓ}^2 suppression of certain structures any more:
 - f_- (resp. f_0) play a role \Rightarrow more potential uncertainty in predicting R
 - A_3 with certain K-pole contributions important \Rightarrow analysis of SD terms more messy

T-odd correlations in $K_{\ell 3\gamma}$

- Aim: access *direct* CP-violation in charged K-decays
- simplest *CP*-violating observable: charge asymmetry of decay widths

$$\Gamma(K^+ \to f) - \Gamma(K^- \to \bar{f})$$

 \Rightarrow only for two weak amplitudes with different final-state phases

- alternative: *T*-odd correlations
 - 1. $K_{\mu3}^+$: $P_{\mu}^T = \langle \boldsymbol{\sigma}_{\mu} \cdot (\mathbf{p}_{\mu} \times \mathbf{p}_{\pi}) / |\mathbf{p}_{\mu} \times \mathbf{p}_{\pi}| \rangle$ transverse μ polarisation

2.
$$K_{\ell 3\gamma}^+$$
: $\xi = \mathbf{q} \cdot (\mathbf{p}_{\pi} \times \mathbf{p}_{\ell}) / M_K^3$
(similar in $K_{\ell 4}$)

Some ideas on radiative $K_{\ell 3}$ decays

T-odd observables:

• define partial decay width with respect to ξ

$$\frac{d\Gamma}{d\boldsymbol{\xi}} = f_{\text{even}}(\boldsymbol{\xi}) + f_{\text{odd}}(\boldsymbol{\xi})$$

• introduce asymmetry

$$A_{\xi} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

where $N_{\pm} = \#$ events with $\xi \ge 0 \Rightarrow A_{\xi}$ depends only on $f_{\text{odd}}(\xi)$

- two sources for contributions to $f_{\text{odd}}(\boldsymbol{\xi})$:
 - 1. final state interaction phases
 - 2. new (beyond SM) interactions with complex couplings
- note: 1. can be eliminated by combining K^+ and K^- asymmetries if not, calculated SM background to constrain new physics

T-odd observables in the Standard Model:

• amplitude squared

$$\sum_{\text{spins}} |T|^2 = \left[\xi - \text{even part}\right] + \xi \sum_{i=1}^4 \left(d_i \operatorname{Im} V_i + d_i^5 \operatorname{Im} A_i\right) f_+ + \dots$$

• in ChPT at $\mathcal{O}(p^4)$: $\mathrm{Im}V_i = \mathrm{Im}A_i = 0$

J. Bijnens, G. Ecker, J. Gasser, Nucl. Phys. B396 (1993) 81

 \Rightarrow at this order $f_{\text{odd}}(\boldsymbol{\xi}) = 0$, $d\Gamma/d\boldsymbol{\xi} = f_{\text{even}}(\boldsymbol{\xi})$:

Some ideas on radiative $K_{\ell 3}$ decays

• only contributions from imaginary parts of photon loops

• asymmetries:

$$A_{\xi}(K_{e3\gamma}^{+}) = -0.59 \times 10^{-4} , \quad A_{\xi}(K_{\mu3\gamma}^{+}) = +1.14 \times 10^{-4}$$

V.V. Braguta et al., Phys. Rev. D65 (2002) 054038

Some ideas on radiative $K_{\ell 3}$ decays

"Forgotten": strong phases at $\mathcal{O}(p^6)$!

 $\mathcal{O}(p^4)$: only *t*-channel cut in V_i for $t = (p_K - p_\pi)^2 > (M_K + M_\pi)^2$ far outside physical region \Rightarrow real!

 \boldsymbol{K}

 $\mathcal{O}(p^6): \text{ "physical" } s\text{-channel cut in } V_i$ for $s = (p_{\pi} + q)^2 > 9M_{\pi}^2$ $\hat{=}$ intermediate 3π state \Rightarrow two-loop $\mathcal{O}(p^6):$ "physical" $s\text{-channel cut in } A_i$ for $s = (p_{\pi} + q)^2 > 4M_{\pi}^2$ $\hat{=}$ intermediate 2π state \Rightarrow one-loop +

anomalous rescattering

Some ideas on radiative $K_{\ell 3}$ decays

So are the SM asymmetries much larger than assumed? not necessarily:

photon loops	pion loops	
$\alpha_{\text{QED}} \times \text{IB}$	$SDpprox 1\%\;IB$	
whole phase space	part of phase space:	
	$s > 4M_\pi^2$	

⇒ perform complete analysis in order to re-assess SM asymmetries!
 B. Kubis, E. Müller, work in progress

Some ideas on radiative $K_{\ell 3}$ decays

T-odd correlations beyond the Standard Model

• More general current-current Lagrangian...

$$\mathcal{L}_{4-f} = \frac{G_F}{\sqrt{2}} \sin \theta_c \Big\{ \bar{s} \gamma^{\mu} \big((1 + g_v) - (1 - g_a) \gamma_5 \big) u \times \bar{\nu} \gamma_{\mu} (1 - \gamma_5) \ell \\ + \bar{s} \big(g_s + g_p \gamma_5 \big) u \times \bar{\nu} (1 - \gamma_5) \ell + g_t \, \bar{s} \sigma^{\mu\nu} u \times \bar{\nu} \sigma_{\mu\nu} \ell \Big\}$$

• ... leads to a more general asymmetry:

$$\sum_{\text{spins}} |T|^2 = \left[\xi - \text{even part} \right] + \frac{\xi}{C_{v+a}} \text{Im}(g_v + g_a) + C_s \text{Im}(g_s) + C_p \text{Im}(g_p) + C_t \text{Im}(g_t) \right]$$

V.V. Braguta et al., Phys. Rev. 68 (2003) 094008

G. Colangelo, M. Gerber, unpublished

Some ideas on radiative $K_{\ell 3}$ decays

• asymmetries numerically:

$$\begin{aligned} A_{\xi} (K_{e3\gamma}^{+}) &= - \left[3.0 \times 10^{-3} \operatorname{Im}(g_{v} + g_{a}) + 2.9 \times 10^{-6} \operatorname{Im}(g_{s}) \right. \\ &+ 3.7 \times 10^{-5} \operatorname{Im}(g_{p}) + 4.3 \times 10^{-6} \operatorname{Im}(g_{t}) \right] \end{aligned}$$

$$\Rightarrow g_s$$
 and g_a suppressed by m_e^2

$$\begin{aligned} A_{\xi} \left(K_{\mu 3\gamma}^{+} \right) &= - \left[1.0 \times 10^{-2} \operatorname{Im}(g_{v} + g_{a}) + 3.6 \times 10^{-3} \operatorname{Im}(g_{s}) \right. \\ &+ 1.2 \times 10^{-2} \operatorname{Im}(g_{p}) + 2.5 \times 10^{-4} \operatorname{Im}(g_{t}) \right] \end{aligned}$$

 $\Rightarrow\,$ can be used to constrain models for new physics

Some ideas on radiative $K_{\ell 3}$ decays

Consider specific new physics models with richer *CP*-violation:

- LR-models with $\operatorname{Im}(g_v) = \operatorname{Im}(g_a) \neq 0$
- other low-energy data imply $|\text{Im}(g_v)| = |\text{Im}(g_a)| < 1.3 \times 10^{-2}$ \Rightarrow asymmetries

$$|A_{\xi}(K_{e3\gamma}^+)| < 0.8 \times 10^{-4}$$
, $|A_{\xi}(K_{\mu3\gamma}^+)| < 2.6 \times 10^{-4}$

• compare to "electromagnetic" asymmetries

$$A_{\xi}(K_{e3\gamma}^+) = -0.59 \times 10^{-4}$$
, $A_{\xi}(K_{\mu3\gamma}^+) = +1.14 \times 10^{-4}$

⇒ measurement at level of "electromagnetic" asymmetries would further constrain model parameters

V.V. Braguta et al., Phys. Rev. 68 (2003) 094008

Some ideas on radiative $K_{\ell 3}$ decays

Conclusions

- consistent theory predictions for structure dependent terms in $K_{e3\gamma}$
- pioneering KTeV measurement in $K^0_{e3\gamma}$ should be improved upon
- photon energy distribution in $K_{e3\gamma}^+$ gives access to axial anomaly
- *T*-odd correlations in $K^+_{\ell 3\gamma}$ as a window to direct *CP*-violation:
 - 1. electromagnetic SM background known
 - 2. will be supplemented by strong background soon
 - 3. first theoretical hints at how to constrain new physics