

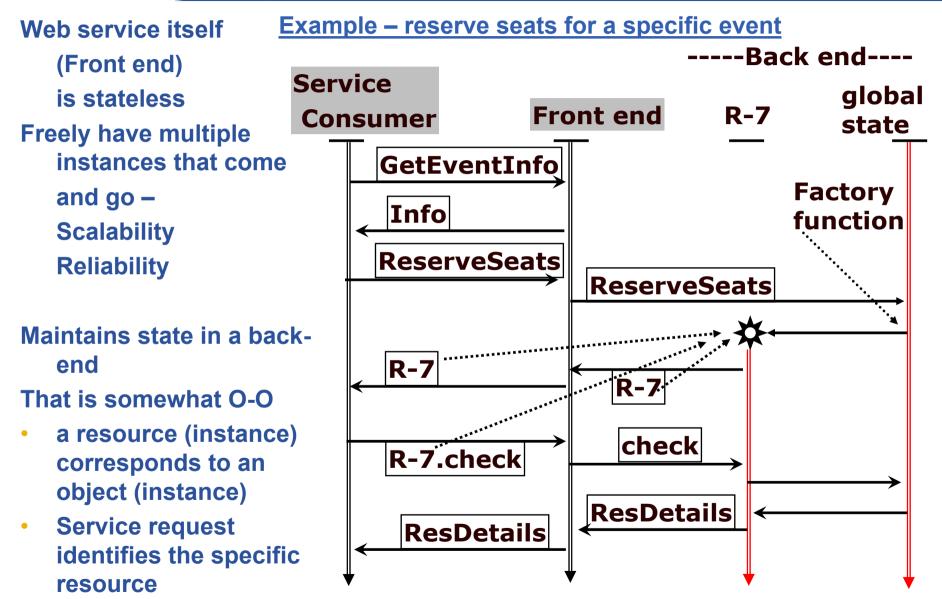
Web Services Resource Framework– WSRF

Richard Hopkins National e-Science Centre, Edinburgh

www.eu-egee.org

- Goals
 - To be gain an understanding of

the (proposed) Web Services Resource Framework



- Basic Standards
 - XML
 - Schema
 - SOAP
 - WSDL
- Provide the ground framework
- Supplementary Standards
 - Build on basic standards to meet particular requirements, e.g.
 - WS-Notification
 - WS-Security
 - WS-RF = WSRF
 - WS-TransactionFramework
 -
- WSRF is important
 - Addresses Fundamental architectural issue in
 - doing O-O-like approach on web services
 - Particularly relevant to grids

Stateful Resources

CGCC Taxonomy of States and Services Enabling Grids for E-sciencE

- **Stateless** implements message exchanges for which there is no access or use of information not contained in the input message. E.g. document compression / de-compression
- **Out-of-band persistent** state response is affected by information that changes by some no-WS means. E.g. weather forecast service
- Transient State (conversational) to co-ordinate a collection of related message exchanges E.g : shopping-basket;
 - Booking holiday book hotel, flights and car-hire via different services with two-phase comit – confirm a reservation when all are held.
 - Proposed standards for this WS-TransactionFramework
- Persistent state (stateful resource) one message exchange produces a long-lived change in state which affects other message exchanges
 if shopping basket were carried forward from session, this would be persistent state
- Combination Booking holiday is conversational involving several persistent state services
- **WSRF** is for Persistent State, not Conversational

PPARC Sumer School, May 2005

- A stateful (WS) resource is a repository for persistent state
- Has state that Comprises a set of state data
- Has a well-defined <u>life-cycle</u> creation and destruction
 - Two kinds of resources (not formally distinguished)
 - Reservation dynamically created by Web Service interactions
 - Event creation is "out of band" a separate mechanism
- Is <u>associated with one or more web services</u>, providing interface for manipulating it
 - A WS-resource comprises: its service; the resource itself
- Has a globally unique identifier
 - www.events.org/E6#R-7
 - Can be passed between services to identify the resource
- Might offer <u>notification</u> of state changes
- (Is similar to an object in O-O architecture)

Each item of state data is a resource property

- which can in principle be retrieved and updated
- E.g Reservation has properties
 - Number of seats on hold
 - Number of seats confirmed
 - Seat numbers allocated
 - Outstanding Payment due
- E.g. Event has properties
 - Number of seats in total
 - on hold
 - firmly booked
- This is typically an abstraction of the actual state, the "exposed state"
 - Might not be the entire state
 - Might not correspond to any physically stored data

•

State Abstraction

Enabling Grids for E-sciencE

- E.g a Queue of "jobs"
- Full actual state
 - a linked list of job entries, each giving
 - Identifier, executable, resource requirements

Name: J23; Exec: ...; CPUload:10 MFLOPS; ...

- Not appropriate to expose all of this
 - Might be a very large amount of data
 - Users do not have a "need to know" it all
- Exposed state might be
 - Details of first job
 - Statistics on the complete job queue
- Not the entire state
- Some properties not actually stored
- Therefore, some operations change the actual state but not the exposed state

ResourceProperties FlrstJob: Name: J23; Exec: ...; CPUload:10MFLOPS; ... Stats JobCount: 100 CPUload: 265 MFLOP; ...

- The set of resource properties can be represented as a XML document –
- the <u>resource properties document</u>
 - Gives values for those aspects of the resource's state which
 - can be retrieved and possibly modified by service consumer
 - through a Web Services interface
- That document has a type
 - fixed for all instances of the resource type
 - defined by a Schema

- Enabling Grids for E-sciencE
- The interface to the resource is defined by a WSDL portType
 - The WSDL definition has an attribute for portType which identifies the resource properties schema
 - <wsdl:portType name="eventsReservationPortT"
 - wsrp:ResourceProperties="tns:ReservationPropertiesT">

<operation ..> </></>

- The fact that the PortType has a properties type document is what says it is a resourced port –
 - Must obey the WSRF standards -
 - Particular operations for resource access/manipulation

Get Operations

- Mandatory GetResourceProperty
 - To retrieve value of a single resource property specify property name
 - Mandatory if there is ResourceProperties attribute for the PortType – the port supports a WS-Resource
- Optional GetMultipleResourceProperties
 - To retrieve values of several properties specify property names
 - important for granularity considerations

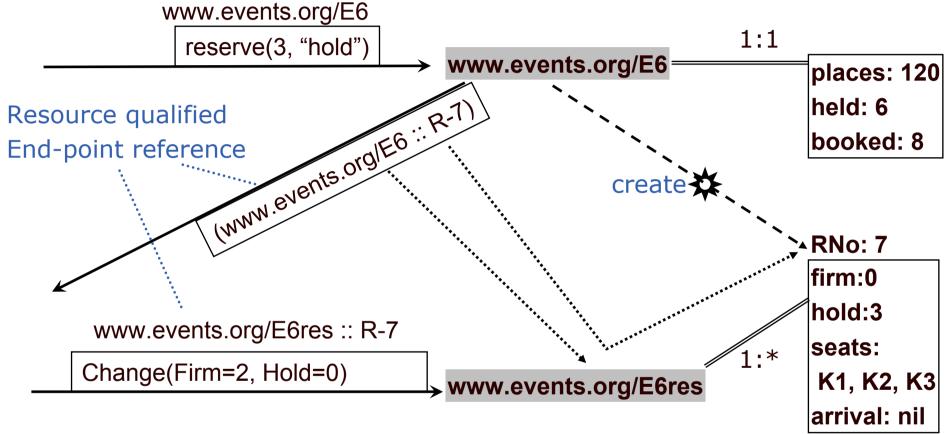
Set Operations

- Optional SetResourceProperties
 - Provide a set of changes
 - e.g existing properties document
 - <resProps>
 - <firm> 0 </>
 - <hold> 3 </>
 - <owes> 169.36 </>
 - <seat> K1 </>
 - <seat>K2 </>
 - <seat>K3 </> </>
 - Insert e.g. add a new seat element
 - Update e.g. remove all seat elements and put in a new set
 - e.g. remove firm element and put in a new one
 - Delete e.g remove all seat elements
- Might be partially applied

RESOURCE IDENTIFIERS

- A stateful (WS) resource
- Has state that Comprises a set of state data
- Has a well-defined life-cycle creation and destruction
- Is associated with one or more web services
- Has a globally unique identifier
- Might offer notification of state changes
- (Is similar to an object in O-O architecture)

Implied Resource Pattern


Enabling Grids for E-sciencE

The resource identifier gives an association between message exchange and the particular resource

- It is an <u>implied</u> input to the operation
 - the resource identifier is NOT an explicit parameter in the request
 - Implicit association is either
 - Static association is made when the web service is deployed 1:1
 - Dynamic association at time of message exchange which can be as a property of the address. Could be as a header.
- Implied-Resource Pattern
 - A set of usage conventions on existing technologies
 - Not necessarily a mandatory standard
- In dynamic case uses resource-qualified references

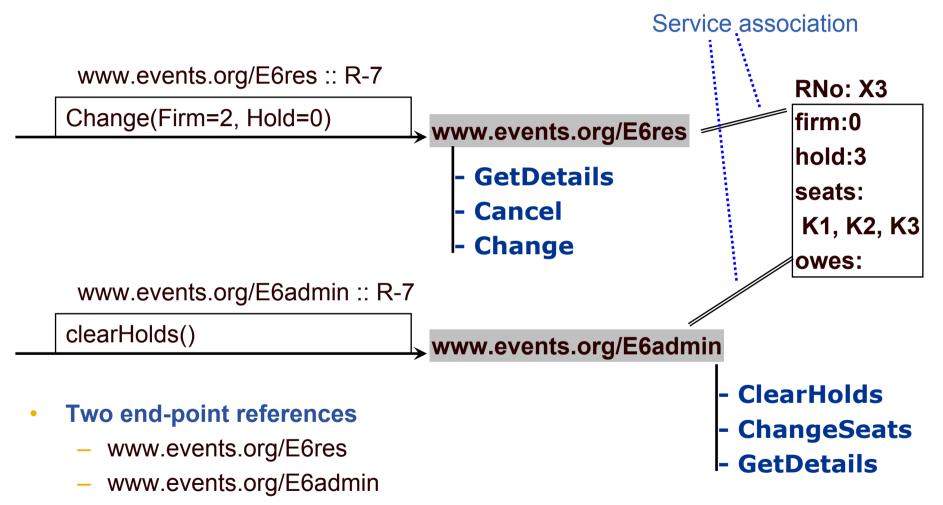
eGee

Resource-qualified endpoint reference – the service address and specific resource identifier – part of WS_Adressing Standard

If service has only one resource instance (1:1) don't need to include resource identifier in address

PPARC Sumer School, May 2005

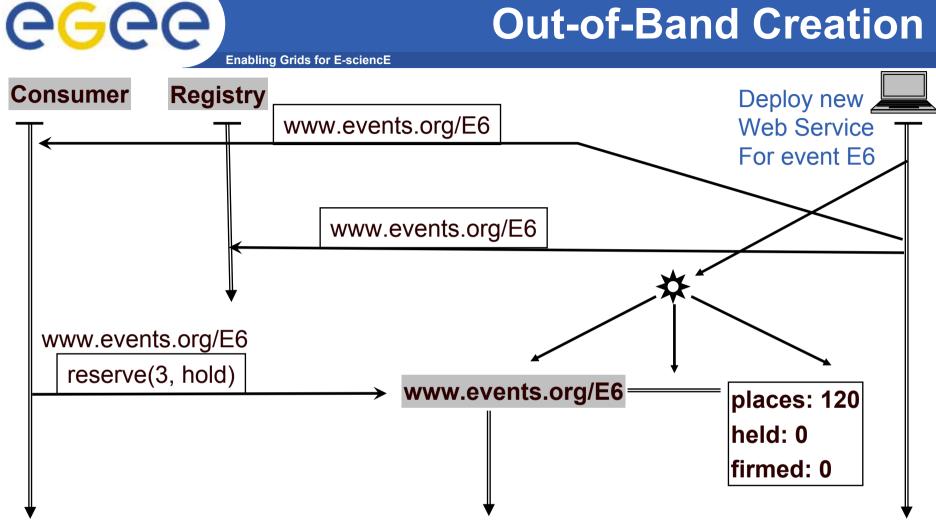
Resource Identifier


- A resource identifier is
 - Managed by the associated service(s)
 - Unique within each associated service
 - Service-name :: resource-id is universally unique
 - Service-name :: resource-id can be passed around and is guaranteed to identify that resource whoever uses it
 - Opaque
 - No-one other than an associated service should attempt to interpret it or de-compose it – no semantics outside an associated service
 - Can't even compare two to see if they identify the same resource
- Identity of a resource is some non-opaque identifier
 - E.g: a person's e-mail address; an ISBN
 - Allows resources in independent services to be X-referred
 - Not covered by the WSRF standards
 - Would be a property of the resource
 - Would be namespace scoped
 - ISBN:123-64-27694
 ISBN = www.ISBNs.org

WEB SERVICE ASSOCIATION

- A stateful (WS) resource
- Has state that Comprises a set of state data
- Has a well-defined life-cycle creation and destruction
- Is associated with one or more web services
- Has a globally unique identifier
- Might offer notification of state changes
- (Is similar to an object in O-O architecture)

• Each providing a different interface to the same set of resource instances

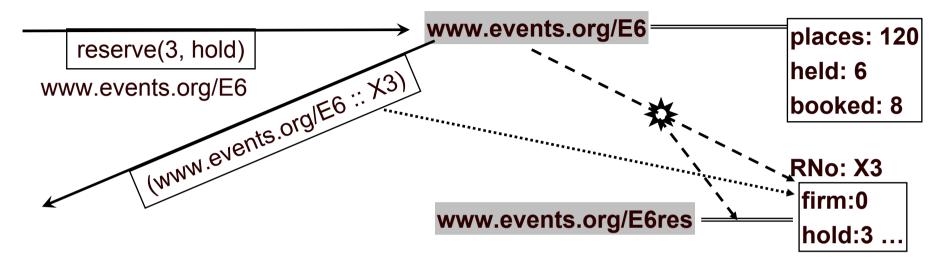


- Enabling Grids for E-sciencE
- A stateful (WS) resource
- Has state that Comprises a set of state data
- Has a well-defined life-cycle
 - Creation

eGee

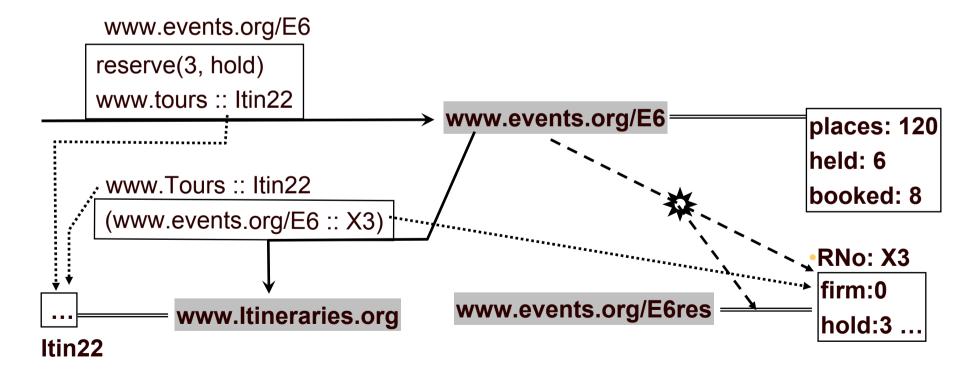
- Out-of-band
- Resource Factory
- Destruction
- Is associated with one or more web services
- Has a globally unique identifier
- Might offer notification of state changes
- (Is similar to an object in O-O architecture)

Out-of-Band Creation



- Create the resource, its service and their connection •
- Inform potential users directly and/or via registry •
- User can access the spontaneously created resource ٠

Resource Factory



Resource Factory Pattern

- A WS resource factory is a Web Service capable of bringing WSresources into existence
 - Create the resource
 - Assign its identity
 - Create the association between the new resource and its service
 - Provide the consumer with the reference to the resource
- Pattern no defined operations nor message formats

- New Resource identifier may be passed back indirectly
 - Via a registry
 - Here by adding to a specified Itinerary resource

Resource Destruction

- Immediate Destruction
 - Send a destroy message to the resource-qualified endpoint
 - E.g. The consumer service could decide to destroy the reservation resource – cancelling the reservation
- Specific standards for destroy operation
 - Request / response / faults

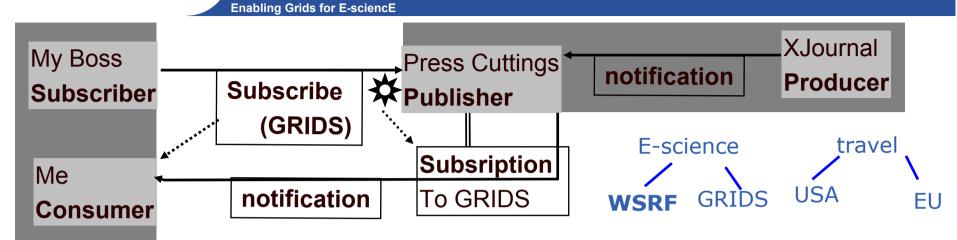
Scheduled Destruction

- A resourced service should have a destruction policy which does not depend on action by the consumer service –
 - Consumer may be impolite or disappear at any time
 - Giving Risk of the physical resources never being recovered,
 - With performance consequences of large number of useless resource instance
- Therefore Scheduled Destruction
 - E.g.
 - A reservation resource has termination time at latest the event date
 - One with non-firm parts has termination time of 2 days from creation
 - Can establish a scheduled termination time for the resource
 - Possibly by negotiation at create time
 - Can request a modification in the termination time
 - E.g. Extend the provisional booking for another 2 days
 - If termination time is in the past this may be interpreted as an immediate asynchronous destroy
 - Termination time may change non-monotonically
 - New termination time may be earlier or later than the old one

Enabling Grids for E-sciencE

If supporting scheduled destruction, then follow this standard

- resource has a current time property
 - This is to help consumer determine clock difference which is relevant to setting termination time
- resource has a current termination time property
- Set termination time operation request and response

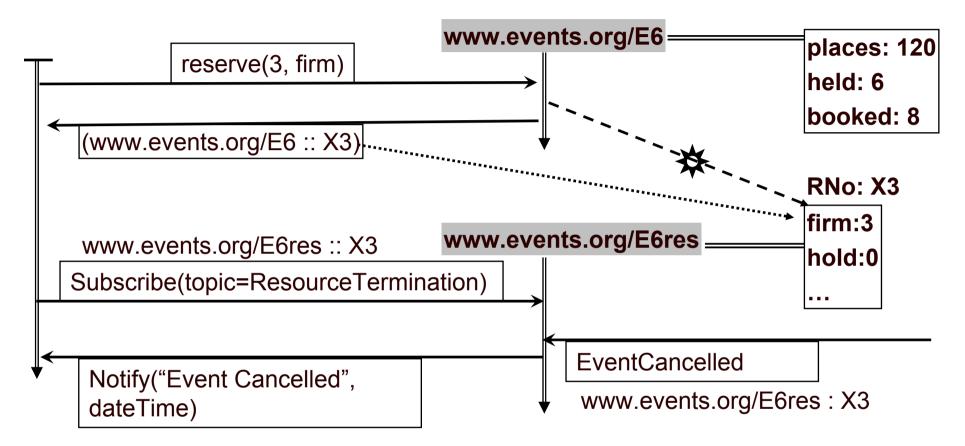

A stateful (WS) resource

eGee

• Has state that Comprises a set of state data

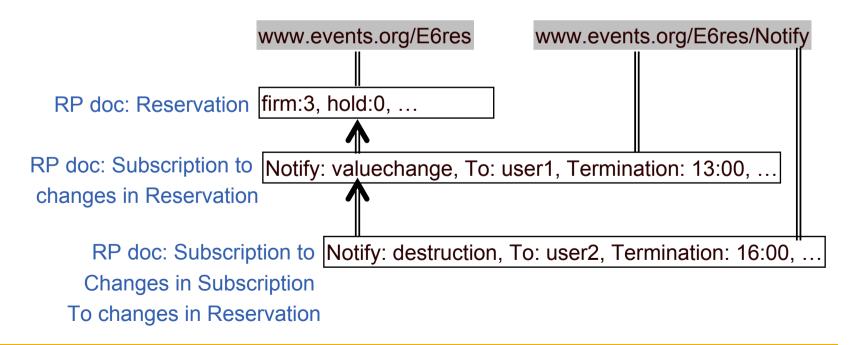
- Has a well-defined life-cycle
- Is associated with one or more web services
- Has a globally unique identifier
- Might offer notification of state changes
- (Is similar to an object in O-O architecture)

WS-Notification - Model


My boss (**Subscriber**) asks a press-cutting service (**Publisher**) to notify me (**Consumer**) of articles on GRIDS (**Topic**) in the popular press (**Producer**)

- Topic Space a forest of topic Trees
- Producer generates notification messages for Consumers
- Publisher distributes notification messages according to subscriptions
 - Can combine Producer and publisher same service generates the event and sends it to the subscribers
 - If separated Publisher is a "Notification Broker"
- Subscriber creates a subscription for a consumer in a Publisher
- Consumer receives notification messages
 - Can combine subscriber and consumer subscribe myself

eee


Enabling Grids for E-sciencE

- Original creation of reservation resource
- Subscribe to the resource for ResourceTermination Topic
- Resource notifies subscriber
- Can similarly subscribe to being notified of value changes for the resource.

eGee

- Following the WS-Notification standard requires
 - The <u>subscription</u> for Notification of a change to the (reservation) resource is itself a <u>WS-resourc</u>e, so
 - Must have a resource properties (R.P) document
 - Subscription R.P. document is different form reservation R.P document
 - So must be a different portType therefore a different service endpoint?
 - Could itself support change notification

LIKE O-O

- A stateful (WS) resource
- Has state that Comprises a set of state data
- Has a well-defined life-cycle
- Is associated with one or more web services
- Has a globally unique identifier
- Might offer notification of state changes
- (Is similar to an object in O-O architecture)

Differences from Object-Oriented Architecture

- Explicit State
 - Exposed State is expressible as an XML document which in principle is retrievable and updatable
 - In O-O an object is defined by the operations on it and the affect of those operations on future operations
 - The type of a WS-resource is
 - More the type of its resource properties document
 - Rather than the signatures of its operations

egee

Scheduled Destruction

- Scheduled Destruction
 - In O-O destruction is by either
 - Explicit or implicit in some action
 - (but in web, service to do the action may be gone)
 - Garbage collection
 - (but un-realistic for web)
 - So in WS need an additional mechanism scheduled destruction
 - Gives the resource provider the right to re-claim physical resources used
- Looser Encapsulation
 - In O-O an object has one interface
 - In WS a resource can be operated on by several services
 - With several different interfaces –
 - the type of the resource is that of its properties doc, not the signatures of its operations

- Out-of-Band operations
 - In O-O everything happens within one coherent framework –
 Other than for the initial object
 - Every object is created by the single initial object or an already created object
 - Every change to an object's state is a result of an operation performed on it by some other object deriving from the initial object
 - In WS

eGee

- Creation and Modification can happen by non-WS mechanism
 - Human intervention
- Services seem to spontaneously appear and disappear
- Fault tolerant
 - In WS partial (permanent) failure is expected and accommodated
 - Partial failure is a permanent condition

- WSRF builds on
 - WS-Addressing W3C submission Aug 2004 (rumoured changes)
- WSRF comprises standards
 - WS-ResourceLifetime 1.2 working draft, June 2004
 - WS-ResourceProperties 1.2 working draft, June 2004
 - WS-RenewableReferences who knows?
 - WS-ServiceGroup 1.2 working draft, June 2004
 - WS-BaseFaults 1.1 initial draft, March 2004
- WSRF supports (and uses)
 - WS-Notification
 - WS-BaseNotification 1.0 OASIS initial draft 1.0 May 2004
 - WS-BrockeredNotification 1.0 OASIS initial draft 1.0 May 2004
 - WS-Topics 1.2 OASIS working draft July 2004

THE END

PPARC Sumer School, May 2005

