
 1

Quote of the Day
Tutorial

Practical created by Oliver Malham,

NeSC Training Team

Document by

Oliver Malham and Guy Warner,
NeSC Training Team

Contents

Introduction..2
Environment...2
Service..2

Write interface and implementation .java files ..3
Compile the code ...3
Create the "WEB-INF\jaxrpc-ri.xml" fil..4
Create the "WEB-INF\web.xml" file ...4
Package it all up into a portable WAR file ..5
Make the WAR file deployable ...5
Deploy your web service ...5

Client..6
Generate the glue components ...6
Write the client...6
Run the Client ..8
What Now? ..8

Appendix – Installing Your own Machine...8

 2

Introduction

This practical will guide you through the creation and deployment of a Java web
service and client. The following software packages will be used:

• Java 2 Enterprise Edition (J2EE) 1.4 (or above)
• Java Web Services Developer Pack (JWSDP) 1.1
• Tomcat-JWSDP

These packages are already installed on the classroom machines. The classroom
machines have already been set up with the directory structure needed for the tutorial,
under your “My Documents” directory.

When this document says to run a command, this command must be run at the
command prompt. Commands are formatted like this in this document. To create java
files the use of jedit is recommended. A shortcut to jedit is on the desktop of the
classroom machines.

If you are using your own machine then please follow through the appendix on
installing your own machine before starting the tutorial. It is assumed in this
document that you are running under a Microsoft Windows version.

Environment

Developing and using Java web services requires a relatively complex set of
environment variables. For occasional developers, it is convenient to set these
variables in a batch file that you run every time you open a command-prompt
window. Alternatively, these settings can be permanently added to the command-
prompt shortcut. Within your tutorial directory is a file called “classpath.bat”. Open a
command prompt (to be used for all future commands within this tutorial). Type

 classpath.bat

This has set up the environmental variables (for example: PATH and CLASSPATH)
needed during the tutorial. If you get errors during compilation or deployment, the
first thing to check is usually that your CLASSPATH variable is correctly configured
in the command prompt that you are currently using.

Service

The first part of this tutorial will show you how to construct and deploy a web service
using Sun’s Java Web Services Developer Pack (JWSDP) and the JWSDP version of
the Tomcat web application container.

 3

Write interface and implementation .java files

From within your “QOTD Tutorial” folder, change firstly to the folder
“service\src\qotd”. All the files you create in this section of the tutorial should be
placed in this folder. The first task is to create a Java interface class for the service.
Create a new (text) file, called "Qotd.java". Start by specifying the package and
importing the classes that are needed:

package qotd; // This is just to keep the code neat

// This class enables remote method invocation

import java.rmi.Remote;

// This is for handling remote exceptions

import java.rmi.RemoteException;

Next define the interface itself. For this simple example service, this is as follows:

public interface Qotd extends Remote {

 public String getQuote() throws RemoteException;

}

That's it for the interface. Save this file. The next stage is to write the class that
implements the functionality that has just been described in the interface. Create
another new file, this time called "Qotd_Impl.java". The contents of this file should
be:

package qotd; // Same package as the interface

public class Qotd_Impl implements Qotd {

 private static String quote = "Your quote";

 public String getQuote() {

 return this.quote;

 }

}

Save this file. That is all of the programming needed for this (admittedly trivial) web
service.

Compile the code

The various files that have been created so far now have to be bundled up into a WAR
file, which is a JAR file with a specific folder structure so that web application
containers can deploy the software automatically.

Compile the two .java files by running this command in the "src" folder:

 4

 javac -d ..\war\WEB-INF\classes\ qotd*.java

The "-d" flag and path tells the compiler to place the compiled ".class" files in the
appropriate directory of the war file structure. A successful compile will produce no
messages.

Create the "WEB-INF\jaxrpc-ri.xml" file

The jaxrpc-ri.xml file tells the wsdeploy utility how to generate the various pieces of
code and configuration information in order for the portable WAR to be converted
and deployed on a specific web application container.

Create a new text file called jaxrpc-ri.xml under your WEB-INF folder. Enter the
following XML:

<?xml version="1.0" encoding="UTF-8" ?>

<webServices

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"

 version="1.0"

 targetNamespaceBase="http://nesc.ed.ac.uk/wsdl"

 typeNamespaceBase="http://nesc.ed.ac.uk/types"

 urlPatternBase="/ws">

 <endpoint

 name="Qotd"

 displayName="Quote Of The Day Service"

 description="A simple web service"

 interface="qotd.Qotd"

 implementation="qotd.Qotd_Impl"/>

 <endpointMapping

 endpointName="Qotd"

 urlPattern="/qotd"/>

</webServices>

This file achieves three principle tasks:

1. It tells wsdeploy about the namespaces that this service will use.
2. It defines a web service endpoint in terms of the Java interface that the service

exposes.
3. An endpoint mapping is defined which tells the application container how to

translate the endpoint into a URL.

Create the "WEB-INF\web.xml" file

The next stage is to create the web.xml file which is used by the application container
to setup the web service.

Create a new text file under your WEB-INF folder, called "web.xml", and enter the
following XML:

 5

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

 <display-name>Quote of the day service</display-name>

 <description>Returns something philosophical</description>

</web-app>

This simply tells the application container what to call the service and the description
of what it does. Both of these are in a user-readable form that is used primarily for the
application container management interface.

Package it all up into a portable WAR file

From within your “war” folder run the following command:

 jar cfv temp.war *

This packages up all of the files and directory structure into a portable WAR file. The
file created may be migrated to other web services environments if necessary. This
tool is very similar in functionality to the linux command line utility tar.

Make the WAR file deployable

Still within the “war” folder run the “wsdeploy” command:

 wsdeploy -o Qotd.war temp.war

This tool converts the portable WAR file into an implementation specific WAR file
by generating all of the tie classes and a WSDL file from your Java interface class. If
errors are encountered running this tool the “temp.war” should be rebuilt after fixing
the errors and before rerunning wsdeploy.

Deploy your web service

The final step is to copy the deployable WAR file, Qotd.war, to the "webapps" folder
of the JWSDP Tomcat installation. On the classroom PC’s this is
“C:\tomcat-jwsdp-1.4\webapps” This will automatically deploy the web service
contained in the WAR file into the tomcat server. You will have to restart the server
in order for these changes to take effect. This is done by the following

 %CATALINA_HOME%\bin\shutdown.bat

(Lots of error messages normally just mean the server wasn’t already running). Then

 %CATALINA_HOME%\bin\startup.bat

 6

By going to "http://localhost:8080/Qotd/qotd", the services WSDL file may be
inspected.

Client

A web service is not much use without a client with which it can interact. The second
part of this tutorial shows how to construct a simple command-line client for the
service that has just written and deployed.

Generate the glue components

First, create a file called config.xml, in the “client” folder and add the following lines
to it:

<?xml version="1.0" encoding="UTF-8" ?>

<configuration xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

 <wsdl location=" http://localhost:8080/Qotd/qotd?wsdl"
packageName="qotd" />

</configuration>

This is the configuration file for the wscompile utility that will generate all of the glue
code. The file tells wscompile which WSDL file to use (location can also refer to a
local WSDL file), and what package name we would like the glue code placed in.

Next, we run the wscompile utility itself:

 wscompile -gen:client -keep -d . config.xml

This gets wscompile to generate the client code (-gen:client), keep the generated
source code so it can be examined later (-keep), and work in the current directory (-d
.), using the configuration described in config.xml. As with previous commands no
output is generated on successfully running.

This will create a "qotd" directory, which will contain a number of .class and .java
files that are used to talk to the web service.

Write the client

Create a new file called qotdClient.java (still in the "client" folder).

First, the various RPC libraries and glue code that have just been generated must be
imported:

 7

// Standard libraries

import javax.xml.rpc.Service;

import javax.xml.rpc.Stub;

// Our glue code

import qotd.Qotd_Service_Impl;

import qotd.Qotd_PortType;

Next, create the client class and give it two methods:

public class qotdClient {

 public static String getQuote() throws Exception

 {

 }

 public static void main(String[] args)

 {

 }

}

Now, fill in the getQuote function so that it calls a remote function via web services.
Add the following to the getQuote function:

Qotd_Service_Impl service = new Qotd_Service_Impl();

Qotd_PortType port = service.getQotdPort();

The Qotd_Impl class can be seen as the "iniator" of the web service, and
QotdPortType can be seen as an "connector" to the web service.
Now call the remote "getQuote" method, as defined in the WSDL, and return it to the
caller:

String quote = port.getQuote();

return (quote);

And that is all that the getQuote client method needs. Now, create some code in the
"main" method so that it calls the getQuote method:

try{

 String quote = getQuote();

 System.out.println(quote);

}

catch (Exception e) {e.printStackTrace();}

 8

That is all of the code that is required. Compile the code with:

 javac qotdClient.java

Run the Client

Run the client with the command:

 java qotdClient

What Now?

If you have time at the end of the tutorial try accessing a WSDL from
http://xmethods.net and write a client for it

Appendix – Installing Your own Machine

If you are setting up your own machine to use for the tutorial, please follow the below
instructions:

1) You will need to install the below software, in the below order (the order is
important):

• Java 2 Enterprise Edition (J2EE) 1.4 or above
(http://java.sun.com/j2ee/index.jsp)

• Tomcat-JWSDP (http://java.sun.com/web services/containers)
• Java Web Services Developer Pack (JWSDP) 1.1

(http://java.sun.com/web services/jwsdp/index.jsp)

These software packages should already be installed on your tutorial machines. If not,
or you are installing all the software on your own machine, please ensure that you
install the JWSDP package last, and that when asked to select an application
containner you make sure that the Tomcat-JWSDP you have just installed is in the list
and selected. If Tomcat-JWSDP is not in the list use the browse button and browse to
the top folder of Tomcat-JWSDP.

2) Create the below folder structure (note that these names are case sensitive):

3) In the tutorial folder created a file called “classpath.bat”. This should be run at the
command prompt you intend to run the tutorial exercises from. The contents of this

 9

file should be as shown below. The values of WS_HOME and JWSDP_HOME
should be adjusted according to where you installed J2EE and Tomcat – JWSDP
respectively. Please note that some of the lines from the file have been split over
several lines below so as to aid legibility (marked by the symbol). These lines must
be typed as one single line.

@echo off

set WS_HOME=\Sun

set JWSDP_HOME=\tomcat-jwsdp-1.4

set CATALINA_HOME=%JWSDP_HOME%

set PATH=%WS_HOME%\Appserver\bin;%WS_HOME%\Appserver\jdk\jre;

%WS_HOME%\Appserver\jdk\bin;%JWSDP_HOME%\apache-ant;

%JWSDP_HOME%\apache-ant\bin;

%JWSDP_HOME%\jwsdp-shared\bin;

%JWSDP_HOME%\bin;

%JWSDP_HOME%\jaxr\bin;

%PATH%

set JAVA_HOME=%WS_HOME%\Appserver\jdk

set J2EE_HOME=%WS_HOME%\Appserver

set JAXRPC_HOME=%JWSDP_HOME%\jaxrpc

set JAXR_HOME=%JWSDP_HOME%\jaxr

set ANT_HOME=%JWSDP_HOME%\apache-ant

set JAVA_XML_HOME=%JWSDP_HOME%

set JAXM_HOME=%J2EE_HOME%\imq\demo

set JAXM_LIB=%J2EE_HOME%\imq\lib

set JAXP_HOME=%JWSDP_HOME%\jaxp

set JAXP_LIB=%JWSDP_HOME%\jaxp\lib

set JAXRPC_LIB=%JWSDP_HOME%\jaxrpc\lib

set XERCES_JAR=%JAXP_HOME%\lib\endorsed\xercesImpl.jar

set JSSE_HOME=%J2EE_HOME%\jdk\jre\lib

set SAAJ_HOME=%JWSDP_HOME%\saaj

set CLASSPATH=.;%WS_HOME%\Appserver\jdk\lib\tools.jar;

%WS_HOME%\Appserver\jdk\lib\rt.jar;

%JAVA_HOME%\jre\javaws\javaws.jar;

%J2EE_HOME%\lib\activation.jar;

%JWSDP_HOME%\jwsdp-shared\lib\mail.jar;

%JAXRPC_HOME%;

%JAXR_HOME%;

%JAXRPC_HOME%\lib\jaxrpc-api.jar;

%JAXRPC_HOME%\lib\jaxrpc-impl.jar;

%JAXRPC_HOME%\lib\jaxrpc-spi.jar;

%SAAJ_HOME%\lib\saaj-api.jar;

%SAAJ_HOME%\lib\saaj-impl.jar;

 10

%JAXP_HOME%;

%JAXP_LIB%\jaxp-api.jar;

%JAXP_LIB%\endorsed\xalan.jar;

%JAXP_LIB%\endorsed\sax.jar;

%JAXP_LIB%\endorsed\dom.jar;

%J2EE_HOME%\lib\j2ee.jar;

%XERCES_JAR%

