

$gg \rightarrow H$ for different MCs:

uncertainties due to jet veto

G. Davatz, ETH Zurich

Motivation

gg→H→WW→lvlv :

- Higgs discovery channel between 2M_w and 2M_z
- Dominant background: nonresonant WW, ttbar and Wtb

jet veto crucial to reduce top-background

→ get uncertainty of jet veto for different Monte Carlos

MCs compared :

PYTHIA 6.319, HERWIG 6.505 + ME correction*, MCatNLO 2.31 and CASCADE 2.009

 N	\mathbf{n}	un	dor	lvin	n	ov	ont	c
I.A.	V	un	uci	ı y ı ı ı	y		CIII	.3

- M(Higgs) = 165 GeV, M(top) =175 GeV
- CASCADE 2.009 (CCFM hadron level MC) with PYTHIA final state parton shower
- HERWIG: gg→ H : no hard ME Corrections, here:preliminary version with ME corrections used (exact)
 PYTHIA, MCatNLO : with ME Corrections (PYTHIA: m(top)→∞, MCatNLO exact)

pdf	MCatNLO:		CTEQ 5M1
	PYTHIA, HERWIG :		CIEQ 5L
CTEQ5M1 (NLO)	α _s (Mz)=0.118	$\Lambda_{QCD}^4 = 0.326$	$\Lambda_{QCD}^5 = 0.226$
CTEQ5L (LO)	α _s (Mz)=0.127	$\Lambda_{QCD}^4 = 0.192$	Λ _{QCD} ⁵ = 0.146
Ласр	PYTHIA:	MSTP(3)= 2 (Λος	$= \Lambda_{QCD} \text{ of pdf}$
	HERWIG:		QCDLAM= 0.18
	MCatNLO:	LAM	DAFIVE =0.226
	CASCADE		MSTP(3)=2

3

* provided by G. Corcella (see Phys.Lett.B 590 (2004)249-257)

p_T Higgs varies for different MCs old Pythia showering

p_T Higgs varies for different MCs NeW (from now on new showering for Pythia used)

p_T Higgs versus jet p_T

for this study: Cone algorithm p_T jet>20 GeV, $|\eta|$ jet<4,5, R=0.5, p_T seed>1 GeV

 p_T Higgs balanced by one or more jets \rightarrow similar but not identical pt spectrum

Apply jet veto of 30 GeV \rightarrow get the efficiency

Efficiency numbers of the jet veto

Differences vary over the p_T spectrum:

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ϵ up to 80 GeV
PYTHIA	0.53	0.68
HERWIG	0.54	0.68
MCatNLO	0.58	0.69
CASCADE	0.55	0.65

 \rightarrow efficiency spread $\approx 10\%$

(without CASCADE up to 80 GeV 1%)

$gg \rightarrow H \rightarrow WW \rightarrow I_V I_V$ selection with all cuts

 $gg \rightarrow H \rightarrow WW \rightarrow IvIv$ selection (GD et al jhep05(2004)009) shows:

small p_T Higgs region most important

Efficiency numbers of the jet veto for MCatNLO, different scales

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ϵ up to 80 GeV
$\mu_{fac,ren}$ = M _H /2	0.585	0.685
$\mu_{fac,ren} = M_H$	0.583	0.692
$\mu_{\text{fac,ren}}$ = 2 M _H	0.582	0.687

 \rightarrow efficiency spread < 1%

9

p_T Higgs spectrum MCatNLO for different scales

Results

- In low p_T region, HERWIG, MCatNLO and PYTHIA are now very similar
- The total efficiencies for HERWIG, MCatNLO, PYTHIA and CASCADE vary around 10%
- In the region of interest for the gg→H→WW→IvIv signal selection (up to p_T^H 80 GeV), the difference for HERWIG, MCatNLO and PYTHIA are smaller than 2% !
- If we smear the E_T of the jet to get realistic CMS efficiency for jet veto with jet resolution: $\Delta E_T / E_T = 118\% / sqrt(E_T) + 7\%$, the difference in the efficiencies between smeared and not smeared case is smaller than 1%

Results

- Including higher order corrections (by reweighting) leads to about same efficiency uncertainty as without reweighting
- Including UE, the difference in the efficiency between PYTHIA with and without UE is smaller than 1% (tested CDF tune A and ATLAS tune)
- The uncertainty of the efficiency for different scales in MCatNLO is lower than 1%
- Results with CASCADE have to be treated carefully

Ongoing work

Staying with ATLAS tune, change p_T cut for UE within 3σ of fit error as proposed by Paolo Bartalini

. . .

backup

Efficiency after smearing (pythia, mcatnlo, herwig without ME correction)

Efficiency after smearing

Get realistic CMS efficiency for jet veto with smeared Jet Et:

jet resolution: $\Delta E_T / E_T = 118\% / sqrt(E_T) + 7\%$

	3	ϵ smeared
ΡΥΤΗΙΑ	0.61	0.61
HERWIG	0.62	0.61
MCatNLO	0.59	0.58

р _т ^н < 80 GeV	ε	ϵ smeared
ΡΥΤΗΙΑ	0.72	0.72
HERWIG	0.70	0.70
MCatNLO	0.69	0.69

15

Efficiency after smearing

Smearing: tendency to lower efficiency, as can be expected:

there are more jets at low pt than high pt →smearing: more jets which had pt below 30 GeV now have pt above 30 GeV than vice versa

 \rightarrow jet veto should affect more events after smearing

but: effect very small

Including Underlying events in Pythia

→ Estimate uncertainty for UE according to the CDF and ATLAS tunings for PYTHIA

Current PYTHIA tunings (used in CMS production)

R. Field; CDF UE tuning method

Comments	CDF – Tune A (PYTHIA6.206)	PYTHIA6.214 – Tuned (ATLAS)
Generated processes (QCD + low-pT)	Non-diffractive inelastic + double diffraction (MSEL=0, ISUB 94 and 95)	Non-diffractive + double diffraction (MSEL=0, ISUB 94 and 95)
p.d.f.	CTEQ 5L (MSTP(51)=7)	CTEQ 5L (MSTP(51)=7)
Multiple interactions models	MSTP(81) = 1 MSTP(82) = 4	MSTP(81) = 1 MSTP(82) = 4
pT min	PARP(82) = 2.0 PARP(89) = 1.8 TeV PARP(90) = 0.25	PARP(82) = 1.8 PARP(89) = 1 TeV PARP(90) = 0.16
Core radius	40% of the hadron radius (PARP(84) = 0.4)	50% of the hadron radius (PARP(84) = 0.5)
Gluon production mechanism	PARP(85) = 0.9 PARP(86) = 0.95	PARP(85) = 0.33 PARP(86) = 0.66
α_s and K-factors	MSTP(2) = 1 MSTP(33) = 0	MSTP(2) = 1 MSTP(33) = 0
Regulating initial state radiation	PARP(67) = 4	PARP(67) = 1

Jet veto efficiency with underlying events (PYTHIA)

ATLAS Tune, CDF Tune A, PYTHIA default

ATLAS Tune, CDF Tune A, PYTHIA no UE

CDF Tune A, PYTHIA default, PYTHIA no UE

	Total E	€ for pt ^H < 80 GeV
CDF tune A	0.596	0.709
ATLAS tune	0.600	0.706
PYTHIA default	0.613	0.723
PYTHIA no UE	0.620	0.730

• CDF and ATLAS tuning \approx same ϵ	
PYTHIA default and tuned PYTHIA: difference < 1 %	
 PYTHIA with and without UE: difference < 1% 	19

Including HO corrections

Reweighting procedure (*GD et al. jhep05(2004)009*) Simple method to include HO QCD corrections

gg→H→WW→lvlv :

pt Higgs balanced by pt jets

cannot use const. K-factor (because of jet veto)

Reweight Pythia with effective pt-dependent K-factors

Very promising results!

(for $M_{\rm H}$ =165 GeV, 5 σ with already 0.4 fb⁻¹)

Results:

Integrated efficiency for PYTHIA, HERWIG and MCatNLO and after reweighting

	3	د reweighted
Pythia 6.225	0.62	0.56
Herwig 6.505	0.63	0.60
MCatNLO 2.31	0.59	0.57

Analyse of Cascade efficiency shape

Efficiency of jet veto with CASCADE

Jet veto at 30 GeV

1. Efficiency at p_T Higgs = 0 GeV

Why is the efficiency not 1 at p_T Higgs = 0 GeV ?

Possible answer: p_T Higgs balanced by more than 1 jet. Σp_T jets = 0 ($\approx p_T$ Higgs), but at least one jet has a p_T higher than 30 GeV \rightarrow jet veto removes event

 p_T Higgs spectrum for max jet pt > 30 GeV:

more events at low p_T Higgs with a max jet pt > 30 GeV in CASCADE than in the other MCs those events will be removed \rightarrow jet veto for CASCADE more efficient

Efficiency for the jet veto with Herwig without ME correction

Efficiency for the jet veto

Differences vary over the pt spectrum:

eg:

- pt H < 20 GeV: differences very small
- pt H ≈ 50 GeV : difference around 30%

Integrated efficiency over whole pt spectrum:

	3
ΡΥΤΗΙΑ	0.62
HERWIG	0.63
MCatNLO	0.59

 \rightarrow efficiency spread < 5%

Herwig with ME correction

HERWIG + ME Corrections

if hard ME corrections included * \rightarrow more jets with high pt \rightarrow total σ the same \rightarrow less jets with low pt \rightarrow overall efficiency ≈ 0.55 (10% smaller than for HERWIG 6.505)

* This preliminary HERWIG + hard ME version was provided by G. Corcella (see Phys.Lett.B 590 (2004)249-257) 30

HERWIG + ME Corrections

Pythia + Herwig: Similar rapidity shape also for pt Higgs>100 GeV

Different pt Higgs regions with Herwig without ME correction

To understand differences between the MC's: look at particular pt Higgs regions

A) pt Higgs < 30 GeV

B) 30 GeV ≤ pt Higgs <100 GeV

C) pt Higgs ≥100 GeV

A) pt Higgs < 30 GeV

multiplicity max jet pt max jet rapidity 0.06 1.0 HERWIG 6.505 LHC 14 TeV ----- HERWIG 6.505 0.9 - MCatNLO 2.31 MCatNLO 2.31 LHC 14 TeV 0.05 ----- PYTHIA 6.225 ----- PYTHIA 6.225 $gg \to H^{\circ}$ 10⁻¹ 0.8 CTEQ5 CTEQ 5 $gg \rightarrow H^{*}$ Cone Algortihm M_H = 165 GeV Cone Algortihm events / 0.2 GeV 0.7 1 / N * events / 5 GeV 00 00 Cone size R = 0.5 events / 1 GeV Cone size R = 0.5 M_H = 165 GeV 0.04 p_T seed > 1 GeV p_T seed > 1 GeV p_⊤ H < 30 GeV 0.6 р_т H < 30 GeV ----- HERWIG 6.505 |η| jet < 4.5 |η| jet < 4.5 MCatNLO 2.31 0.03 0.5 LHC 14 TeV PYTHIA 6.225 $gg \rightarrow H^{\circ}$ CTEQ5 * 0.4 * 1 / N M_H = 165 GeV Cone Algortihm 1/N 0.02 Cone size R = 0.5 0.3 p_⊤ seed > 1 GeV p_⊤ H < 30 0.2 10 |η| jet < 4.5 0.01 0.1 0.0 0.00 1 2 3 4 5 6 -4 -3 -2 -1 0 0 -5 1 2 3 4 5 0 50 100 150 200 250 multiplicity max jet rapidity max jet pt

essentially identical distributions, minor effects for very high pt

B) $30 \text{ GeV} \le \text{pt Higgs} < 100 \text{ GeV}$

max jet pt

multiplicity

max jet rapidity

C) 100 GeV ≤ pt Higgs

max jet rapidity

multiplicity

max jet pt

Efficiency numbers of the jet veto old

Differences vary over the p_T spectrum:

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ε up to 80 GeV
ΡΥΤΗΙΑ	0.61	0.72
HERWIG	0.54	0.68
MCatNLO	0.58	0.69
CASCADE	0.55	0.65

 \rightarrow efficiency spread $\approx 10\%$

(without CASCADE \approx 5%) 37