

Generating WbWb process with a jet veto

Anne-Sylvie Giolo-Nicollerat, ETHZ

Les Houches workshop 2005

Reminder: H→WW

• Signature

2 leptons, missing transverse energy and jet veto

- No mass peak reconstruction
 => need good background control
- Main backgrounds
 - 1. WW \rightarrow IvIv (remove with leptons angular correlation)
 - 2. Top production (WbWb as final state)

(remove with jet veto)

here: study top background !

How to generate top background ?

~90% of the total cross section: resonant ttbar

generate with PYTHIA

~10% one off-shell top:
 This fraction increases after JET VETO

Alternative way to generate top background

 Use MadGraph to generate WbWb final states full matrix elements (2→4 processes)

(ttbar: $2 \rightarrow 2(+top decays!)$, Wtb $2 \rightarrow 3$ and interferences !)

Compare: 1) ttbar + Wt(b) (Pythia+Toprex) with 2) WbWb (MadGraph)

Apply Higgs selection: effect of jet veto Compare ttbar + Wt(b) with WbWb

	ttbar Pythia	Wt(b) Toprex	WbWb MadGraph	Signal (after all cuts)
σ×BR	52000 fb	6000 fb	60600 fb	24 fb (m _H =165 GeV)
Kin. cuts	870 fb	130 fb	980 fb	Background WW : 10 fb
Jet veto	30 fb	20 fb	20 fb	IOtal 16.5 fb (Pythia,Toprex)
cuts on p _t	3.5 fb	3 fb	2 fb	12 fb (MadGraph)

Where does the factor 3(2.5) come from ?

Kin. cuts: 2 iso. leptons, $|\eta_{lep}| < 2$, $E_T^{miss} > 20 \text{ GeV}$, $m_{II} < 35 \text{ GeV}$, $\phi_{II} < 45$ Jet veto: No jet with $p_t < 30 \text{ GeV}$, $|\eta| < 4.5$ Cuts on p_t : 35 GeV < P_t^{lep} max<50 GeV and P_t^{lep} min > 25 GeV

Why does the jet veto create such a difference ? Study the jet "reconstructed" from particle tree

The generated p_t spectrum of the b quark from the shower

Wt(b) is much softer in MadGraph than in Toprex

Compare the two Wtb contributions

Madgraph 2→3 process

Toprex $2 \rightarrow 2$ + additionnal b from shower

CompHEP simulation, similar to MadGraph

leads to different kinematics

2→2 process (Toprex) looks less 'physical': bad description of the high p_t region

[Belyaev, Boos, Phys. Rev. D63, 2001]

Prescription Simulate Wtb with MadGraph $2 \rightarrow 3$ process *(F. Maltoni)* (no solid matching prescription for Wt and Wtb yet)

Madgraph with full WbWb matrix elements, taking out ttbar-onshell contributions (not gauge invariant !)

In this case, Wtb after all cuts: **0.7fb** (ttbar: 3.5fb)) Toprex+ttbar: 3fb + 3.5fb

To discuss !

- LO scale uncertainty on Wt(b) process
- NLO correction for Wtb ?
- Effect of the spin correlations

• ... etc ...

Backup slides

Difference does not come from interferences/double counting

WbWb \approx tt + Wtb (when 3 processes simulated with MadGraph)

Important scale uncertainties on Wtb

cross section $_{LO}$ (scale= m_T^{b} , m_{top}) $\approx 2 \cdot cross$ section $_{LO}$ (scale= m_{top}) \Rightarrow Take the inclusive NLO calculation for Wt to normalize (K \approx 1.4) [calculation: Zhu hep-ph/0109269]

But variation in p_t shape for b not from top:

Chose m_{top} as scale for simulation with MadGraph

Other kinematic variables look similar

Missing energy

Angle between the leptons in transverse plane

