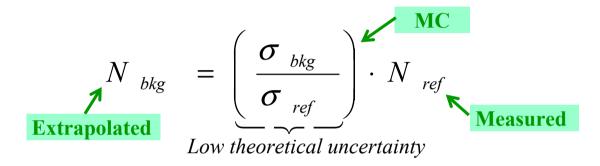

H->WW->21: general properties

• High σ *BR higgs channel, but no peak!

• Clean but rather common final state, need high rejection (up to 10⁻⁵) for higher rates processes (e.g. *tt* or DY)

• Big uncertainties from the theoretical and experimental side, need for S/B>1

• To understand the backgrounds the data must be utilized to the maximum extent.



	Signal (M=160)	WW	tt
σ*BR (fb)	1000	7400	52000
Events* after all selections	170	110	30

*Events for 10 fb⁻¹ and 2I final state. Wtb, gg->WW, DY not included

Background Normalization: the idea

• Idea based on the relation:

- Identify a region in the phase space where a given background is enhanced
- The reference region must be under control from the theoretical point of view to the maximum extent.
- Low/negligible contamination from other processes in ref. region
- Not too far away from signal region (similar topology/kinematics)

Experimental Viewpoint

• In real life we deal with:

$$N_{bkg} = \left(\frac{\boldsymbol{\sigma}_{bkg} \cdot \boldsymbol{\varepsilon}_{bkg}}{\boldsymbol{\sigma}_{ref} \cdot \boldsymbol{\varepsilon}_{ref}}\right) \cdot N_{ref}$$

• Crucial to understand the <u>efficiency</u> and <u>its error</u> of each reconstructed object involved

• Critical to estimate the possible contamination of the reference region(s) by high rate processes faking the actual final state

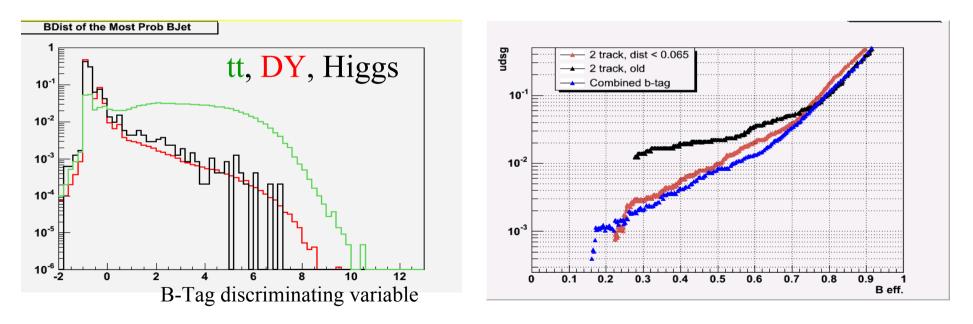
• Keep it simple: not too many reference regions and not too sophisticate selections

Example with tt background

tt reference region:

- same selections on leptons and MEt
- <u>no</u> jet-veto
- jet Pt > 50 GeV
- <u>one</u> b-tagged jet (no veto on extra jets)

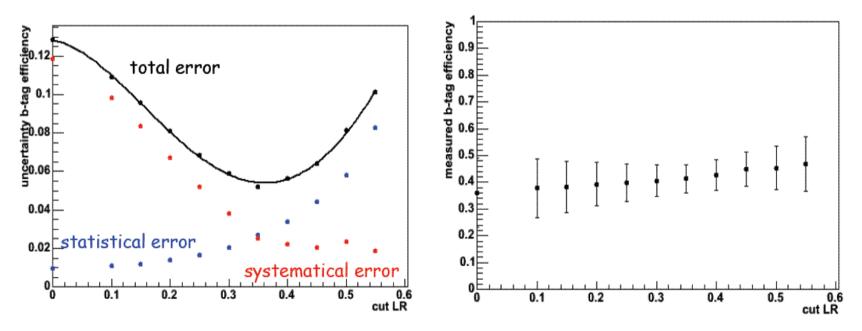
Results for LO signal, DY and tt. Wt not included


	Events* for 10 fb ⁻¹
Higgs	0
DY	15
tt	280

* 2 μ final state

Experimental Concerns: b-tagging

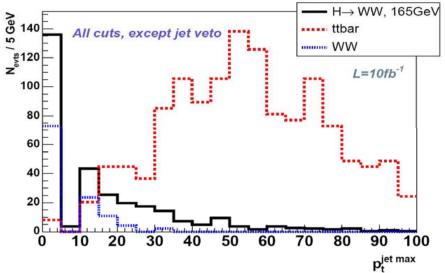
• Needs a precise and solid knowledge of the tracker and vertex detector


- Usually sophisticated algorithms relying on good performances of tracking and vertices (primary and secondary)
- The algorithms provide a probability for the jet to come from a *b*. Trade-off between pureness and efficiency
- Need to identify data samples with b's without exploiting b-tagging to get the algorithmic efficiency and its error

Experimental Concerns: b-tagging

• At the LHC high *tt* luminosity. Possible to select pure *tt* events just with kinematical constraints (*t*-mass)

• Checking the b-tagging efficiency w.r.t the *tt* control sample leads to uncertainties $\sim 10\%$



• Need a control sample also to estimate the mis-tagging efficiency (QCD)

tt normalization: alternative approach

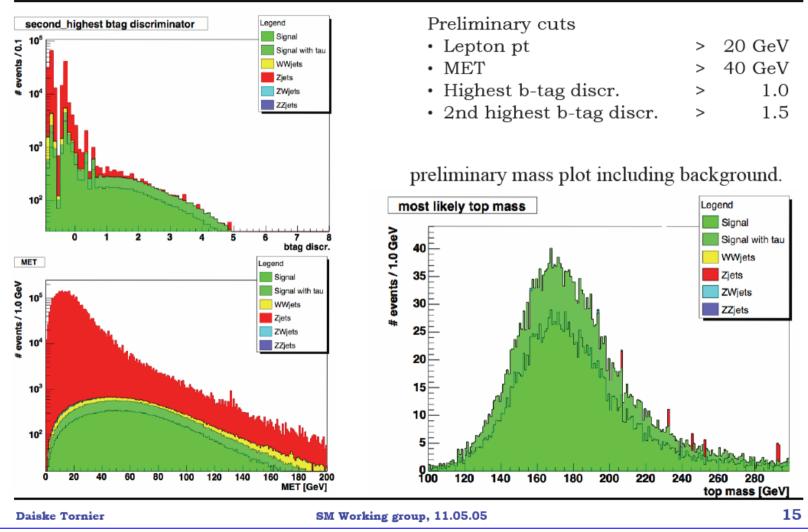
tt Reference Region: same selections as before but NO request for a b-tagged jet

- To be applied only for different flavor leptons final state (avoid DY)
- Topology: μ[±] + *e*^{-/+} +MEt+1j. Contamination from WW+j(s) (negligeble?)
- Systematics coming from uncertainty on jets energy scale (~10%) and from jets misidentification. (10⁻⁴ for *e*'s and 10⁻⁵ for μ 's). Possible contamination by W+2j

	Events* for 10 fb ⁻¹
Higgs	70
tt	1050

Discussion

- Which ref. region for tt (number of b-tags, extra jet veto)?
- DY+bb not considered, could it be relevant?
- How to enhance Wt? Select a different ref. region?
- How should this ref. region for Wt be defined? Still dileptonic final state or a different one?


BACKUPS

Standard dileptonic *tt* selection

Background

Les Houches Workshop, Marco Zanetti - INFN Padova

ATLAS systematics estimation

Systematic Errors(1)

- Jet Energy Scale Calibration
 - Scale jet energies up & down by 5% in the barrel and 10% in the endcaps

▶<u>Missing P</u>

Smear x and y components by 5 GeV each

- PDF uncertainties
 - Consider PDF uncertainty in α_{ww} only
 - Generate QCD WW (MC@NLO) with CTEQ6 central value PDF set and each of the 40 error PDF sets

W. Quayle	Page 9	TeV4LHC Workshop, 29 Apr. 2005

ATLAS systematics estimation

Systematic Errors(2) $\Delta \alpha_{ww} = 1\%$ (Jet E. scale calibration) $\oplus 2\%(P_{T}^{miss})$ $\oplus 4.5\%(PDF) = 5.0\%$ $\Delta \alpha_{\mu} = 7\%$ (Jet E. scale calibration) $\oplus 1\%(P_{T}^{miss}) = 7.1\%$ $\Delta \alpha_{\rm H}^{\rm WW} = 9\%$ (Jet E. scale calibration) $\oplus 1\%(P_{T}^{miss}) = 9.1\%$ More work needs to be done to understand theoretical errors • $gg \rightarrow WW$ (via quark box) contribution needs to be addressed W. Quayle TeV4LHC Workshop, 29 Apr. 2005 Page 10