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NLO features
Jet structure: final-state collinear radiation

PDF evolution: initial-state collinear radiation

Opening of new channels

Reduced sensitivity to fictitious input scales: µR, µF

predictive normalisation of observables

first step toward precision measurements
accurate estimate of signal and background
for Higgs and new physics

Matching with parton-shower MC’s: MC@NLO



Jet structure
the jet non-trivial structure shows up first to NLO

leading order

NLO

NNLO



NNLO corrections may be relevant if
the main source of uncertainty in extracting info from 
data is due to NLO theory:        measurementsαS

NLO corrections are large: 
Higgs production from gluon fusion in hadron collisions

NLO uncertainty bands are too large to test
theory vs. data:  b production in hadron collisions

NLO is effectively leading order:
energy distributions in jet cones

in short, NNLO is relevant where NLO fails to do its job



Summary of αS(MZ)

S. Bethke hep-ex/0407021

world average of 

αS(MZ) = 0.1182 ± 0.0027

αS(MZ) = 0.1183 ± 0.0027

αS(MZ)

using MS and NNLO results only

(cf. 2002

)

filled symbols are NNLO results

outcome almost identical
because new entries wrt 2002 
- LEP jet shape observables and
4-jet rate, and HERA jet rates
and shape variables - are NLO



Is NLO enough to describe data ?

cross section in       collisions at 1.96 TeV

dσ(pp̄ → HbX, Hb → J/ψ X)/dpT (J/ψ)

pp̄b

Cacciari, Frixione, Mangano, Nason, Ridolfi 2003

NLO + NLL
good agreement
with data (with use
of updated FF’s by
Cacciari & Nason) 

The CDF value in the 
inset was preliminary. 
The published value is
(CDF hep-ex/0412071)

19.4 ± 0.3(stat)+2.1
−1.9(syst) nb



Inclusive jet      cross section at Tevatron

good agreement between 
NLO and data over 
several orders of
magnitude

constrains the gluon
distribution at high x

Is NLO enough to describe data ?

pT



Is NLO enough to describe data ?
di-lepton rapidity distribution for           production vs. Tevatron Run I data(Z, γ∗)

LO and NLO curves are 
for the MRST PDF set

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003

no spin correlations



Is NLO enough to describe data ?
Drell-Yan      cross section at LHC with leptonic decay of the W W

|MC@NLO − NLO| = O(2%)

NNLO useless without spin correlations

S. Frixione M.L. Mangano 2004

Precisely evaluated Drell-Yan         cross sections could be used 
as ``standard candles’’ to measure the parton luminosity at LHC

W, Z



Is NLO enough to describe data ?

Total cross section for inclusive Higgs production at LHC

µR = 2MH µF = MH/2

lower
contour bands are

upper
µR = MH/2 µF = 2MH

scale uncertainty
is about 10%

NNLO prediction stabilises the perturbative series



NNLO Drell-Yan     production at LHCZ

Rapidity distribution for
an on-shell    bosonZ

NLO increase wrt to LO at central Y’s (at large Y’s)30%(15%)
NNLO decreases NLO by 1 − 2%

scale variation: ≈ 30% at LO; ≈ 6% at NLO; less than      at NNLO1%

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003



Scale variations in Drell-Yan     productionZ

solid: vary       and       together

dashed:  vary        only

dotted:  vary        only

µR

µR

µF

µF

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003



Drell-Yan     production at LHCW

Rapidity distribution
for an on-shell
       boson (left)
       boson (right) W

+

W
−

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003

distributions are symmetric in  Y

NNLO scale variations are               at central (large) 1%(3%) Y



Higgs production at LHC
a fully differential cross section:
bin-integrated rapidity distribution, with a jet veto

jet veto: require
R = 0.4

for 2 partons

|pj
T | < p

veto
T = 40 GeV

|p1

T |, |p
2

T | < p
veto

T

|p1

T + p
2

T | < p
veto

T

R2

12 = (η1 − η2)
2 + (φ1 − φ2)

2

if

if

R12 > R

R12 < R

MH = 150 GeV (jet veto relevant in the                        decay channel)H → W
+
W

−

K factor is much smaller for the vetoed x-sect than for the inclusive one:
average         increases from NLO to NNLO: less x-sect passes the veto|pj

T |

C. Anastasiou K. Melnikov F. Petriello 2004



NLO assembly kit  

leading order

e
+
e
−

→ 3 jets

NLO virtual

NLO real

|Mtree

n
|2

|Mtree
n+1|

2 → |Mtree
n |2 +

∫
dPS|Psplit|

2

∫
ddl 2(Mloop

n )∗Mtree
n =

(
A

ε2
+

B

ε

)
|Mtree

n |2 + fin.

= −

(
A

ε2
+

B

ε

)

IR

d = 4 − 2ε

⊗



NLO production rates  
Process-independent procedure devised in the 90’s

Giele Glover & Kosower

the 2 terms on the rhs are divergent in d=4

use universal IR structure to subtract divergences

the 2 terms on the rhs are finite in d=4

slicing
subtraction Frixione Kunszt & Signer; Nagy & Trocsanyi

dipole Catani & Seymour
antenna Kosower; Campbell Cullen & Glover

σ = σ
LO

+ σ
NLO

=

∫
m

dσ
B
m Jm + σ

NLO

σ
NLO

=

∫
m+1

dσ
R
m+1Jm+1 +

∫
m

dσ
V
m

Jm

σ
NLO

=

∫
m+1

[
dσ

R
m+1Jm+1 − dσ

R,A
m+1Jm

]
+

∫
m

[
dσ

V
m

+

∫
1

dσ
R,A
m+1

]
Jm



Observable (jet) functions
vanishes when one parton becomes soft or collinear to another oneJm

Jm(p1, ..., pm) → 0 , if pi · pj → 0

vanishes when two partons become simultaneously soft and/or collinearJm+1

Jm+1(p1, ..., pm+1) → 0 , if pi · pj and pk · pl → 0 (i "= k)

dσ
B

m
is integrable over 1-parton IR phase space

R and V are integrable over 2-parton IR phase space

observables are IR safe

Jn+1(p1, .., pi, .., pj , .., pn+1) → Jn(p1, .., p, .., pn+1) if pi → zp, pj → (1−z)p

Jn+1(p1, .., pj = λq, .., pn+1) → Jn(p1, ..., pn+1) if λ → 0

for all n ≥ m



NLO IR limits  
collinear operator

Cir|M
(0)
m+2(pi, pr, . . .)|

2 ∝
1

sir
〈Mm+1(0)(pir, . . .)|P̂

(0)
fifr

|Mm+1(0)(pir, . . .)〉

soft operator

Sr|M
(0)
m+2(pr, . . .)|

2 ∝
sik

sirsrk

〈Mm+1(0)(. . .)|Ti · Tk|Mm+1(0)(. . .)〉

counterterm
∑

r


∑

i!=r

1

2
Cir + Sr


 |M(0)

m+2(pi, pr, . . .)|
2

performs double subtraction in overlapping regions



A1|M
(0)
m+2|

2 =
∑

r


∑

i!=r

1

2
Cir +


Sr −

∑
i!=r

CirSr





 |M(0)

m+2(pi, pr, . . .)|
2

the NLO counterterm

has the same singular behaviour as SME, and is free of double subtractions

contains spurious singularities when parton          
becomes unresolved, but they are screened by                  

s != r

Jm

Cir (Sr − CirSr) |M
(0)
m+2|

2 = 0

can be used to cancel double subtractionCirSr

Sr (Cir − CirSr) |M
(0)
m+2|

2 = 0

NLO overlapping divergences

Cir (1 − A1) |M
(0)
m+1|

2 = 0 Sr (1 − A1) |M
(0)
m+1|

2 = 0





NNLO subtraction

σ
NNLO

=

∫
m+2

dσ
RR
m+2Jm+2 +

∫
m+1

dσ
RV
m+1Jm+1 +

∫
m

dσ
VV
m

Jm

the 3 terms on the rhs are divergent in d=4
use universal IR structure to subtract divergences

σ
NNLO

=

∫
m+2

[
dσ
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m+2Jm+2 − dσ

RR,A2

m+2 Jm

]

+

∫
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[
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]
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∫
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m

+

∫
2
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m+2 +

∫
1

dσ
RV,A1

m+1

]
Jm

takes care of doubly-unresolved regions,
but still divergent in singly-unresolved ones

still contains        poles in regions away from 1-parton IR regions1/ε



Constructing dσRR,A2

m+2

! Use IR factorization formulae valid in the doubly-
unresolved regions Catani-Grazzini, Campbell-Glover

! To account for double subtraction in overlapping
regions: subtract the collinear limit of the soft one
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(0)
m+2|

2 =
∑

r

∑
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{ ∑
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1

6
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∑
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1

8
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1

2
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+
1

2

(
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∑
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∑
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)

+
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1
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2

Easy to check:

Cirs(1−A2)|M
(0)
m+2|

2 = 0

Cir;js(1−A2)|M
(0)
m+2|

2 = 0

CSir;s(1−A2)|M
(0)
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2 = 0

Srs(1−A2)|M
(0)
m+2|

2 = 0

Zoltán Trócsányi: Matching of Singly- and Doubly-Unresolved Limits of Tree-level QCD Squared Matrix Elements ETH Zürich, March 8, 2005 – p.16/22

NNLO counterterm
construct the 2-unresolved-parton counterterm using the IR currents

Cirs (1 − A2) |M
(0)
m+2|

2 = 0

Cir;js (1 − A2) |M
(0)
m+2|

2 = 0

Srs (1 − A2) |M
(0)
m+2|

2 = 0

CSir;s (1 − A2) |M
(0)
m+2|

2 = 0

performing double and triple subtractions in overlapping regions
G. Somogyi Z. Trocsanyi VDD 2005



needs a NLO-type subtraction
between the m+2- and the m+1-parton contributions
The subtraction scheme at NNLO

σNNLO = σNNLO
{m+2} + σNNLO

{m+1} + σNNLO
{m}

σNNLO
{m+2} =
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has to be finite
in the doubly-
unresolved
regions!

Restricts
A1 and A12

severely

Zoltán Trócsányi: Matching of Singly- and Doubly-Unresolved Limits of Tree-level QCD Squared Matrix Elements ETH Zürich, March 8, 2005 – p.13/22

must be finite in
the doubly-unresolved regions 

takes care of the singly-unresolved regions and       of the over-subtracting

The subtraction scheme at NNLO

σNNLO = σNNLO
{m+2} + σNNLO

{m+1} + σNNLO
{m}
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{m+2} =

∫
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in the doubly-
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Restricts
A1 and A12

severely
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A1 A12

G. Somogyi Z. Trocsanyi VDD 2005



need to construct         such that all overlapping regions in
1-parton and 2-parton IR phase space regions are counted only once

A12

Constructing dσRR,A12

m+2

Need to construct A12 such that

! Cir(A1 + A2 − A12)|M
(0)
m+2|

2 = Cir|M
(0)
m+2|

2

! Sr(A1 + A2 − A12)|M
(0)
m+2|

2 = Sr|M
(0)
m+2|

2

! Cirs(A1 + A2 − A12)|M
(0)
m+2|

2 = Cirs|M
(0)
m+2|

2

! Cir;js(A1 + A2 − A12)|M
(0)
m+2|

2 = Cir;js|M
(0)
m+2|

2

! CSir;s(A1 + A2 − A12)|M
(0)
m+2|

2 = CSir;s|M
(0)
m+2|

2

! Srs(A1 + A2 − A12)|M
(0)
m+2|

2 = Srs|M
(0)
m+2|

2

A12|M
(0)
m+2|

2 ≡ A1A2|M
(0)
m+2|

2 does the job −→

need to compute StA2|M
(0)
m+2|

2, CktA2|M
(0)
m+2|

2 and

CktStA2|M
(0)
m+2|

2
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Constructing dσRR,A12
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the definition of        is rather simple  A12

but showing that it has the right properties is non trivial, and requires considering
iterated singly-unresolved limits and strongly-ordered doubly-unresolved limits 



Conclusions

in the last few years, a lot of progress on the computation of 
NNLO cross sections

sector decomposition is already up and running

subtraction is making progress (stay tuned)


