Progress on NNLO subtraction

Vittorio Del Duca
INFN Torino

Les Houches 7 May 2005

NLO features

Q Jet structure: final-state collinear radiation

- PDF evolution: initial-state collinear radiation

Q Opening of new channels
Q Reduced sensitivity to fictitious input scales: μ_{R}, μ_{F}
Q predictive normalisation of observables

- first step toward precision measurements
(1) accurate estimate of signal and background for Higgs and new physics
9 Matching with parton-shower MC's:MC@NLO

Jet structure

the jet non-trivial structure shows up first to NLO

leading order

NLO

NNLO corrections may be relevant if

Q the main source of uncertainty in extracting info from data is due to NLO theory: α_{S} measurements
Q NLO corrections are large: Higgs production from gluon fusion in hadron collisions

Q NLO uncertainty bands are too large to test theory vs. data: b production in hadron collisions

Q NLO is effectively leading order: energy distributions in jet cones
in short, NNLO is relevant where NLO fails to do its job

Is NLO enough to describe data ?

b cross section in $p \bar{p}$ collisions at 1.96 TeV

NLO + NLL

 good agreement with data (with use of updated FF's by Cacciari \& Nason)The CDF value in the inset was preliminary. The published value is (CDF hep-ex/04I207I)
$19.4 \pm 0.3(\text { stat })_{-1.9}^{+2.1}($ syst $) \mathrm{nb}$

Is NLO enough to describe data ?

Inclusive jet p_{T} cross section at Tevatron

good agreement between
NLO and data over
several orders of magnitude
constrains the gluon distribution at high x

Is NLO enough to describe data ?

di-lepton rapidity distribution for $\left(Z, \gamma^{*}\right)$ production vs. Tevatron Run I data

LO and NLO curves are for the MRST PDF set
no spin correlations
C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003

Is NLO enough to describe data?

Drell-Yan W cross section at LHC with leptonic decay of the W
Cuts $\mathrm{A} \longrightarrow\left|\eta^{(e)}\right|<2.5, p_{T}^{(e)}>20 \mathrm{GeV}, p_{T}^{(\nu)}>20 \mathrm{GeV}$
Cuts $\mathrm{B} \longrightarrow\left|\eta^{(e)}\right|<2.5, p_{T}^{(e)}>40 \mathrm{GeV}, p_{T}^{(\nu)}>20 \mathrm{GeV}$

Cuts A	LO		LO+HW	NLO		MC@NLO
	0.5249	$\xrightarrow{-7.7 \%}$	0.4843	0.4771	$+\xrightarrow{1.5 \%}$	0.4845
	$\downarrow 5.4 \%$			$\downarrow 7.0 \%$		$\downarrow 6.3 \%$
Cuts A, no spin	0.5535			0.5104		0.5151
Cuts B	$0.0585+\xrightarrow{208 \%} 0.1218$			0.1292	$+\xrightarrow{2.9 \%}$	0.1329
	$\downarrow 29 \%$			$\downarrow 16 \%$		$\downarrow 18 \%$
Cuts B, no spin	0.0752			0.1504		0.1570

Q $|\mathrm{MC@NLO}-\mathrm{NLO}|=\mathcal{O}(2 \%)$
S. Frixione M.L. Mangano 2004

Q NNLO useless without spin correlations
Q Precisely evaluated Drell-Yan W, Z cross sections could be used as "standard candles" to measure the parton luminosity at LHC

Is NLO enough to describe data ?

Total cross section for inclusive Higgs production at LHC

NNLO prediction stabilises the perturbative series

NNLO Drell-Yan Z production at LHC

- $30 \%(15 \%)$ NLO increase wrt to LO at central Y's (at large Y's) NNLO decreases NLO by $1-2 \%$
scale variation: $\approx 30 \%$ at LO; $\approx 6 \%$ at NLO; less than 1% at NNLO

Scale variations in Drell-Yan Z production

solid: vary μ_{R} and μ_{F} together
dashed: vary μ_{F} only
dotted: vary μ_{R} only

Drell-Yan W production at LHC

distributions are symmetric in Y
NNLO scale variations are $1 \%(3 \%)$ at central (large) Y

Higgs production at LHC

a fully differential cross section:
bin-integrated rapidity distribution, with a jet veto
C. Anastasiou K. Melnikov F. Petriello 2004

Q $M_{H}=150 \mathrm{GeV}$ (jet veto relevant in the $H \rightarrow W^{+} W^{-}$decay channel)
K factor is much smaller for the vetoed x -sect than for the inclusive one: average $\left|\mathbf{p}_{T}^{j}\right|$ increases from NLO to NNLO: less x-sect passes the veto

NLO assembly kit

$e^{+} e^{-} \rightarrow 3$ jets
leading order

$$
d=4-2 \epsilon \quad \int d^{d} l 2\left(\mathcal{M}_{n}^{\text {loop }}\right)^{*} \mathcal{M}_{n}^{\text {tree }}=\left(\frac{A}{\epsilon^{2}}+\frac{B}{\epsilon}\right)\left|\mathcal{M}_{n}^{\text {tree }}\right|^{2}+\text { fin. }
$$

NLO production rates

Process-independent procedure devised in the 90's

slicing
subtraction

- dipole

Q antenna

Giele Glover \& Kosower
Frixione Kunszt \& Signer; Nagy \& Trocsanyi
Catani \& Seymour
Kosower; Campbell Cullen \& Glover

$$
\begin{aligned}
& \sigma=\sigma^{\mathrm{LO}}+\sigma^{\mathrm{NLO}}=\int_{m} d \sigma_{m}^{B} J_{m}+\sigma^{\mathrm{NLO}} \\
& \sigma^{\mathrm{NLO}}=\int_{m+1} d \sigma_{m+1}^{\mathrm{R}} J_{m+1}+\int_{m} d \sigma_{m}^{\mathrm{V}} J_{m}
\end{aligned}
$$

the 2 terms on the rhs are divergent in $d=4$
use universal IR structure to subtract divergences

$$
\sigma^{\mathrm{NLO}}=\int_{m+1}\left[d \sigma_{m+1}^{\mathrm{R}} J_{m+1}-d \sigma_{m+1}^{\mathrm{R}, \mathrm{~A}} J_{m}\right]+\int_{m}\left[d \sigma_{m}^{\mathrm{V}}+\int_{1} d \sigma_{m+1}^{\mathrm{R}, \mathrm{~A}}\right] J_{m}
$$

the 2 terms on the rhs are finite in $\mathrm{d}=4$

Observable (jet) functions

J_{m} vanishes when one parton becomes soft or collinear to another one

$$
J_{m}\left(p_{1}, \ldots, p_{m}\right) \rightarrow 0, \quad \text { if } \quad p_{i} \cdot p_{j} \rightarrow 0
$$

$\Longrightarrow d \sigma_{m}^{\mathrm{B}}$ is integrable over I-parton IR phase space
J_{m+1} vanishes when two partons become simultaneously soft and/or collinear

$$
J_{m+1}\left(p_{1}, \ldots, p_{m+1}\right) \rightarrow 0, \quad \text { if } \quad p_{i} \cdot p_{j} \text { and } p_{k} \cdot p_{l} \rightarrow 0 \quad(i \neq k)
$$

R and V are integrable over 2-parton IR phase space
observables are IR safe

$$
\begin{gathered}
J_{n+1}\left(p_{1}, . ., p_{j}=\lambda q, . ., p_{n+1}\right) \rightarrow J_{n}\left(p_{1}, \ldots, p_{n+1}\right) \quad \text { if } \lambda \rightarrow 0 \\
J_{n+1}\left(p_{1}, . ., p_{i}, . ., p_{j}, . ., p_{n+1}\right) \rightarrow J_{n}\left(p_{1}, . ., p, . ., p_{n+1}\right) \quad \text { if } \quad p_{i} \rightarrow z p, p_{j} \rightarrow(1-z) p
\end{gathered}
$$

$$
\text { for all } n \geq m
$$

NLO IR limits

collinear operator

$$
\mathrm{C}_{i r}\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2} \propto \frac{1}{s_{i r}}\left\langle\mathcal{M}_{m+1}(0)\left(p_{i r}, \ldots\right)\right| \hat{P}_{f_{i, f}, ~}^{(0)}\left|\mathcal{M}_{m+1}(0)\left(p_{i r}, \ldots\right)\right\rangle
$$

soft operator

$$
\mathrm{S}_{r}\left|\mathcal{M}_{m+2}^{(0)}\left(p_{r}, \ldots\right)\right|^{2} \propto \frac{s_{i k}}{s_{i r} s_{r k}}\left\langle\mathcal{M}_{m+1}(0)(\ldots)\right| T_{i} \cdot T_{k}\left|\mathcal{M}_{m+1}(0)(\ldots)\right\rangle
$$

counterterm

$$
\sum_{r}\left(\sum_{i \neq r} \frac{1}{2} \mathrm{C}_{i r}+\mathrm{S}_{r}\right)\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2}
$$

performs double subtraction in overlapping regions

NLO overlapping divergences

$\mathrm{C}_{i r} \mathrm{~S}_{r}$ can be used to cancel double subtraction

$$
\begin{aligned}
& \mathrm{C}_{i r}\left(\mathrm{~S}_{r}-\mathrm{C}_{i r} \mathrm{~S}_{r}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0 \\
& \mathrm{~S}_{r}\left(\mathrm{C}_{i r}-\mathrm{C}_{i r} \mathrm{~S}_{r}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0
\end{aligned}
$$

the NLO counterterm

$$
\mathrm{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\sum_{r}\left[\sum_{i \neq r} \frac{1}{2} \mathrm{C}_{i r}+\left(\mathrm{S}_{r}-\sum_{i \neq r} \mathrm{C}_{i r} \mathrm{~S}_{r}\right)\right]\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2}
$$

Q has the same singular behaviour as SME, and is free of double subtractions
$\mathrm{C}_{i r}\left(1-\mathrm{A}_{1}\right)\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}=0$

$$
\mathrm{S}_{r}\left(1-\mathrm{A}_{1}\right)\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}=0
$$

Q contains spurious singularities when parton $s \neq r$ becomes unresolved, but they are screened by J_{m}

NNLO assembly kit

$$
e^{+} e^{-} \rightarrow 3 \text { jets }
$$

double virtual

real-virtual

double real

NNLO subtraction

$\sigma^{\mathrm{NNLO}}=\int_{m+2} d \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} d \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} d \sigma_{m}^{\mathrm{VV}} J_{m}$
the 3 terms on the rhs are divergent in $d=4$ use universal IR structure to subtract divergences

$$
\sigma^{\mathrm{NNLO}}=\int_{m+2}\left[d \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-d \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}\right]
$$

takes care of doubly-unresolved regions, but still divergent in singly-unresolved ones

$$
+\int_{m+1}\left[d \sigma_{m+1}^{\mathrm{RV}} J_{m+1}-d \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}} J_{m}\right]
$$

still contains $1 / \epsilon$ poles in regions away from I-parton IR regions

$$
+\int_{m}\left[d \sigma_{m}^{\mathrm{VV}}+\int_{2} d \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}+\int_{1} d \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}\right] J_{m}
$$

NNLO counterterm

9 construct the 2-unresolved-parton counterterm using the IR currents

$$
\begin{aligned}
\mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\sum_{r} \sum_{s \neq r} & \left\{\sum _ { i \neq r , s } \left[\frac{1}{6} \mathbf{C}_{i r s}+\sum_{j \neq i, r, s} \frac{1}{8} \mathbf{C}_{i r ; j s}+\frac{1}{2} \mathbf{S}_{r s}\right.\right. \\
+ & \left.\frac{1}{2}\left(\mathrm{CS}_{i r ; s}-\mathbf{C}_{i r s} \mathrm{CS}_{i r ; s}-\sum_{j \neq i, r, s} \mathbf{C}_{i r ; j s} \mathbf{C S}_{i r ; s}\right)\right] \\
& -\sum_{i \neq r, s}\left[\mathbf{C S}_{i r ; s} \mathbf{S}_{r s}+\mathbf{C}_{i r s}\left(\frac{1}{2} \mathbf{S}_{r s}-\mathbf{C S}_{i r ; s} \mathbf{S}_{r s}\right)\right. \\
& \left.\left.+\sum_{j \neq i, r, s} \mathbf{C}_{i r ; j s}\left(\frac{1}{2} \mathbf{S}_{r s}-\mathrm{CS}_{i r ; s} \mathbf{S}_{r s}\right)\right]\right\}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
\end{aligned}
$$

$$
\text { G. Somogyi Z.Trocsanyi VDD } 2005
$$

performing double and triple subtractions in overlapping regions

$$
\begin{array}{cc}
\mathrm{C}_{i r s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0 & \mathrm{~S}_{r s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0 \\
\mathrm{C}_{i r ; j s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0 & \mathrm{CS}_{i r ; s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0
\end{array}
$$

needs a NLO-type subtraction

between the $\mathrm{m}+2$ - and the $\mathrm{m}+\mathrm{l}$-parton contributions

$$
\begin{array}{r}
\sigma^{\mathrm{NNLO}}=\sigma_{\{m+2\}}^{\mathrm{NNLO}}+\sigma_{\{m+1\}}^{\mathrm{NNLO}}+\sigma_{\{m\}}^{\mathrm{NNLO}} \\
\sigma_{\{m+2\}}^{\mathrm{NNLO}}=\int_{m+2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}\right.
\end{array}
$$

must be finite in
the doubly-unresolved regions

$$
-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}+\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}
$$

G. Somogyi Z. TrocsanyiVDD 2005

A_{1} takes care of the singly-unresolved regions and A_{12} of the over-subtracting

$$
\begin{aligned}
\sigma_{\{m+1\}}^{\mathrm{NNLO}}= & \int_{m+1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}-\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}} J_{m}\right. \\
& \left.+\int_{1}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right]_{d=4} \\
\sigma_{\{m\}}^{\mathrm{NNLO}}= & \int_{m}\left[\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}+\int_{1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}\right]_{d=4} J_{m}
\end{aligned}
$$

need to construct A_{12} such that all overlapping regions in I-parton and 2-parton IR phase space regions are counted only once

$$
\begin{aligned}
& \mathbf{C}_{i r}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C}_{i r}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{S}_{r}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{S}_{r}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{C}_{i r s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C}_{i r s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{C}_{i r ; j s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C}_{i r ; j s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{C S}_{i r ; s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C S}_{i r ; s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{S}_{r s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{S}_{r s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
\end{aligned}
$$

the definition of A_{12} is rather simple

$$
\mathbf{A}_{12}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \equiv \mathbf{A}_{1} \mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

but showing that it has the right properties is non trivial, and requires considering iterated singly-unresolved limits and strongly-ordered doubly-unresolved limits

Conclusions

in the last few years, a lot of progress on the computation of NNLO cross sections

Q sector decomposition is already up and running

Q subtraction is making progress (stay tuned)

