Comparison between Pythia "NLO" for b quark and Higgs spectra in $gg \rightarrow bbh$ and $gb \rightarrow bh$ production

Artur Kalinowski

Institute of Experimental Physics, Warsaw University

Alexandre Nikitenko

Imperial College, London

May 2005

- b quark mass: PMAS 5,1=4.62
- Higgs boson mass: PMAS 25,1=200 and 500
- SM Higgs boson production $gg \rightarrow Q\bar{Q}h$: MSUB 121=1
- $\bullet~{\rm SM}~{\rm Higgs}~{\rm boson}~{\rm production}~gb \to bh:$ MSUB 32=1
- b quarks if final state: **KFPR 121,2=5**
- Multiple interactions off: **MSTP 81=0**
- No primodial k_T spectrum: **MSTP 91=0**
- Fragmentation and decay off: **MSTP 111=0**
- PDF: MSTP 52=2 and MSTP 51=10042: CTEQ6L1 LHA
- PDF evolution, and ISR parton showers: $Q^2 = \mu_R^2 = (2 \cdot m_b + m_H)^2/16$
- Factorization scale for PDFs: $\mu_F^2 = \mu_R^2$

PYCELL jets

- PARU(51) = 5.0 ! rapidity range
- PARU(52) = 0.5 ! initiator cell
- PARU(53) = 10 ! cut on jet Et
- PARU(54) = 0.7 ! jet cone size
- MSTU(51) = 100 ! rapidity bins
- MSTU(52) = 72 ! phi bins
- MSTU(54) = 3 ! jet presented in list as 4 vector with mass

NLO Pythia

- Initial state radiation (ISR) : **MSTP 61=1**
- Final state radioation (FSR): MSTP 71=1
- b quarks after radiation

Pythia vs. theoretical calculations for gb ightarrow bh. LO b jet.No ISR, FSR

To be away from the collinear limit for $gb \to bh$ in Pythia generate events with $p_T^b > 20 \; GeV$ (CKIN(3)=20)

Pythia vs. theoretical calculations for gb ightarrow bh. LO b jet.No ISR, FSR

Higgs boson $p_{_{T}}$ for leading b quark in tagging range (p_{_{T}}^{^{b}}\!\!>\!\!20 [GeV] AND $|\!\eta^{^{b}}\!|\!<\!\!2.4)$

 $gg \rightarrow bbh$ vs. $gb \rightarrow bh$ in Pythia

0.15

0.1

0.05

0

-0.05^L

20

Higgs boson $\textbf{p}_{_{T}}$ for leading b quark in tagging range ($\textbf{p}_{_{T}}^{b}\text{>}20$ [GeV] AND $|\eta^{b}|\text{<}2.4)$

Higgs boson p₁ for leading b quark in tagging range (p_{p}^{b} >20 [GeV] AND $|\eta^{b}|$ <2.4)

 $gg \rightarrow bbh$ vs. $gb \rightarrow bh$ in Pythia

gg
ightarrow bbh vs. gb
ightarrow bh in Pythia

LesHouches AK (IEP Warsaw), AN (IC London)

For generation of b(b)H in Pythia use $gg \rightarrow bbH$ process.

(If you want to tag one b in your analysis) Because:

- $p_T^b > 20 \ GeV$ is to close to experimental cut on the b jet E_T , which is equal to $20 \ GeV$.
- Second p_T spectrum *b* is prperly generated only with $gg \rightarrow bbH$

Still there is an issue about η distributions