

Associated Higgs boson production via $gg/qq \rightarrow ttH(h^0), t \rightarrow l+X, H(h^0) \rightarrow \gamma\gamma$

Robert Frazier University of Bristol Suzanne Gascon-Shotkin Institut de Physique Nucléaire de Lyon/Université Claude Bernard Lyon I Alexander Nikitenko Imperial College London

An SM or two-doublet neutral Higgs boson produced in association with a tt pair with $H(h^0) \rightarrow \gamma \gamma$ shares the following minimal signature with the WH and ZH channels just discussed (O.Ravat, M. Lethuillier [IPNL]):

2 isolated high-pt photons with $m_{\gamma\gamma}=m_{H}$: fully reconstructible mass peak

1 isolated high-pt tagging lepton from a t decay product (usually a W): Handle to beat down QCD background, and reconstruct primary vertex. Less dependence on photon energy resolution than gluon fustion channel

Particular 2-doublet case of MSSM: gluon fusion production channel subject to suppression given top-stop degeneracy (maximal mixing), not true for associated production channels.

Topology and Motivation-II

Advantage:

Less vulnerable to QCD background than WH/ZH

Disadvantage:

Relatively low cross-section even compared to

WH/ZH

Prior work in CMS: Generator-level studies of the SM (Ilyin et al, CMS NOTE 1997/101), and MSSM (R. Kinnunen & D, Denegri, CMS NOTE 1997/057) cases demonstrated S/B~1.

In ATLAS:Full simulation study in Physics TDR (based on thesis of G. Eymard (LAPP), S/sqrt(B)={4.3-2.8} for mH={100-140}, signal efficiency ~30%. CERN-ATL-COM-PHYS-2004-056 par Beauchemin, P and Azuelos, Georges "Search for the SM Higgs Boson in the gamma gamma + ETmiss channel" For 100fb-1, for ttbarh channel, for mH=120 GeV, S/B of ~2 (10.2 signal events for 5.4 background events).

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Associated Higgs Boson Production via gg/qq->ttbarH '

Backgrounds

Reducible:

- Process:
- ttγγ (+ njets)*,

bbγγ+(njets)

 $W\gamma\gamma$ (+ njets)^{**,} $Z\gamma\gamma$ (+ njets)^{**}

W(Z)+tt (+njets), W(Z)+bb (+njets) **Generators (All LO):**

ALPGEN, MADGRAPH

MADGRAPH, COMPHEP MADGRAPH, ALPGEN

PYTHIA, COMPHEP ALPGEN

kW+mZ (+njets) ,tbbar (W) + j, ALPGEN t + jets, Wtbbar + jets

ALPGEN (Mangano,Moretti, Piccinini, Pittau, Polosa) '*'→processes specially added for this analysis '**'→ processes to be added for this analysis

MADGRAPH (Maltoni, Stelzer)

COMPHEP (Boos, Dubinin, Ilyin, Pukhov, Savrin)

PYTHIA (Lonnblad, Mrenna, Sjostrand)PHOTOS (Barberio, Was) used to generate radiationphotons where not provided
Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I'Associated Higgs Boson Production via gg/qq->ttbarH'4

Backgrounds

5

Process: Generators: Reducible: $W\gamma$ (+ njets)^{**,} $Z\gamma$ (+ njets)^{**} **MADGRAPH, ALPGEN** lγ kW+mZ (+njets) ALPGEN **ALPGEN** W(Z)+tt (+njets), W(Z)+bb (+njets) bbγ (+njets), ttγ (+njets) ** **MADGRAPH, ALPGEN** bbtt (+njets), bbbb (+njets), tttt **ALPGEN** (+njets) γyj, yjj, **ALPGEN, (PYTHIA)** $m\gamma$ +njets, tbbar (W) + jets, t + jets, J Wtbbar + jets

Note: Several processes could contribute as both irreducible and reducible background and/or to several reducible 'signals'. Virtually any high-multiplicity process could be a reducible background.
Must watch out for double-counting of background!

Signal Cross-sections--SM

Standard Model H

LO HQQ 1.1 (M. Spira), ALPGEN & MADGRAPH compared

eσ(ttH)x BR (H→γγ) from HDECAY 3.101 (Djouadi, Kalinowski, Spira)

NLO corrections (Beenakker, Dittmaier, Kramer, Plumper, Spira, Zerwas, hep-ph/0107081, 0211352) stabilize σ against renormalization scale, Kfactor~{1.2-1.4}

SUse ALPGEN/MG for event generation since exact ME treatment ,conserves spin correlations in t decays

Signal Cross-sections--MSSM

Parameters used for maximal mixing scenario:

 μ = -200, M2 = 200, M_{SUSY} = 1TeV

$$M_{Gluino} = 800 \text{GeV}, A_t = 2450 \text{ GeV}$$

- ME generated events (ALPGEN/MG)→PS & hadronization w/PYTHIA 6.225
- A priority is proper treatment of ttγγ

Current Methodology

Priority is proper treatment of ttγγ

Priority is proper treatment of ttγγ

Some particle-level plots...(ttbarH signal and $tt\gamma\gamma$ backgrounds...

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Associated Higgs Boson Production via gg/qq->ttbarH '

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

- Plots below generated with AlpGen
- Mean P_t is lower in background by 8-10 GeV

LO Background Cross-sections:Partial List

Irreducible:		Reducible:		Process	σ	Generator
Process	σ x BR (1 W->l ν)	Generator	- 244	γγ + 1 jet	70.0 pb	AL(3)
tt γγ (1,2,3)	1.6, 6.1, 4,9 fb	AL,MG(1) (1,2)		γγ+2jets	60.4 pb	AL(3)
bbγγ	221 fb	MG (1)		γγ+3 jets	33.1 pb	AL(3)
Wγγ	23.6 fb	MG (2)		γγ+4 jets	15.3 pb	AL(3)
Ζγγ	27.0 fb	MG (2)		γ+2 jets	60.3 nb	AL(3)
CTEQ5L, m _{γγ} >80 GeV +				γ+3 jets	26.8 nb	AL(3)
(1)→p _{Tγ} >20 GeV, η _γ <2.5				γ+4 jets	9.1 nb	AL(3)
(2) → p _{Tγ} >15 GeV, η _γ <2.7				γ+5 jets	2.5 nb	AL(3)
(3) → p _{τj,l,γ} >15 GeV, η _{γ,j,l} <2.7, ΔR(l,j or j,j)>0.3				tttt	2.9 fb	AL (4)
(4)→p _{Tilb>} 15 GeV, η _{bl} <2.7, ΔR(Q,Q or I,j)>0.3				3 tttt + 1 jet	3.4 fb	AL (4)
Strong dependence on renormalization scale				ttbb	1.1 pb	AL (4)
Very preliminary, do not yet include K-Factors				ttbb + 1 jet	1.2 pb	AL (4)
As in WH/ZH, may have a need for generator- level presclections for some backgrounds				bbbb	3.5 nb	AL (4)
Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I				bbbb + 1 jet	2.9 nb	AL (4)

Selection

14

- Several available variables to cut on
- Typically
 - Higgs mass window (+/- 1.5 GeV, if M_H known)
 - p_t of gammas, p_t of 2-gamma resultant, sum of p_t of gammas
 - Costheta*
 - Lepton p_t
 - Dot product of gamma & lepton 3-momenta
 - Various gamma and lepton isolation cuts
 - Multiplicity cuts on non-tt backgrounds
- Awaiting full sets of irreducible backgrounds before studying cuts in greater detail

Issues (Th/Exp) + Wish List

- Incorporation of 'delicate' SM background processes in ME generators: ttγγ (+ njets), Wγγ (+ njets) [in test]; ttγ (+njets), bbγγ + (njets), Wbbarγγ (+ njets).. [to come soon]
- NLO cross-sections for myriad SM background processes
- NLO generators for myriad SM background processes (evaluate possible differences in distributions of discriminating variables wrt LO)
- ME/PS/Hadronization issues: (ME/PS matching, correct hard jet rates and effect on signal visibility (PYT 6.2 vs 6.3..))
- Evaluation of irreducible component of all reducible backgrounds at particle level for
 - First handle on 'dangerosity'
 - Finalize size and strategy (preselection?) for samples for full simulation

Detector Simulation, Reconstruction, Pileup Issues:

Rates of fake photons/leptons from leptons/jets (instrumental /pileup background): what are single and double fake rates in our context? Can we afford to neglect some double-fake reducible background processes (e.g. Ijj, IIj, γjj) ? Possible strategy to evaluate possibly very small [order 10**-4] fake rates to avoid prohibitively massive ME generations (suggested by ML Mangano): "recycling" of same smaller ME sample through different, PS randomizations

Institutes and Manpower

Imperial College London

16

University of Bristol : Robert Frazier, Dave Newbold

IPN Lyon: Suzanne Gascon-Shotkin, Morgan Lethuillier, Damien Mercier

Imperial College London: Sasha Nikitenko