Fred Olness Les Houches 17 May 2005 bbH discussion group

Bottom quark initiated Higgs production at hadron colliders

Alexander Belyaev

Michigan State University

In collaboration with Jon Pumplin, Wu-Ki Tung, C.-P. Yuan

A.Belyaev "Bottom quark initiated Higgs production", MSU

⇒ cross sections are highly enhanced, the process could serve as a tool to measure Yuakawa coupling and bottom-quark distributions, therefore, the understanding of theoretical uncertaintiy is crucial

Estimation of PDF uncertainties: Hessian method

► Hessian method

involves the Hessian matrix $H_{ij} = \frac{1}{2} \frac{\partial^2 \chi_0^2}{\partial a_i \partial a_j}$ calculated at the minimum of χ_0^2 . The next step is to diagonolize H_{ij} and to find eigenvectors of Hessian. Then for each eigenvector we have two displacements from $\{a_0\}$ (in the + and - directions along the vector) At these points, $\chi_{\pm}^2 = \chi_0^2 + T^2$, where T parametrizes the tolerance.

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

Original parameter basis

contours of constant χ^2_{global} **u**_i: eigenvector in the l-direction **p**(i): point of largest a_i with tolerance T **s**₀: global minimum

> diagonalization and rescaling by the iterative method

• Hessian eigenvector basis sets

(b) Orthonormal eigenvector basis

 z_l

p(*i*)

 $\delta X \text{ for any quantaty } X,$ which depends on PDF, can be expressed as $\overrightarrow{z_{k}} (\delta X)^{2} = T^{2} \sum_{i,j} (H^{-1})_{ij} \frac{\partial X}{\partial a_{i}} \frac{\partial X}{\partial a_{j}}$ in terms of the eigenvector basis one has

master equation for 41 CTEQ6.1 PDF set: $(\delta X)^2 = \frac{1}{4} \sum_{k=1}^n \left[X(a_i^+) - X(a_i^-) \right]^2$ based on a linear approximation: $\chi^2(a)$ is assumed to be a quadratic function of the parameters $\{a\}$, and X(a) is assumed to be linear

Estimation of PDF uncertainties: LM method

• Method of Lagrange multiplier (LM): introduction of the Lagrange multiplier variable λ and minimizing the function

 $\chi^2_\lambda(\lambda,a) = \chi^2(a) + \lambda X(a)$

with respect to the original *n* parameters {*a*} for fixed (many) values of λ \implies parametric relationship between $\chi^2(a)$ and X(a): $\chi^2_{\lambda}(\lambda, a_0) = \chi^2(a_0) + \lambda X(a_0) \implies X = X[\chi^2(a_0, \lambda)]$ For given $\Delta \chi^2 = \chi^2(a_0, \lambda_{\pm}^{\Delta}) - \chi^2(a_0, 0) = 100$ one finds two values λ_{\pm}^{Δ} $\implies \delta X_{\pm} = X[\chi^2(a_0, \lambda_{\pm}^{\Delta})] - X[\chi^2(a_0, 0)]$

LM method is more robust in general 5! since it does not approximate X(a) and $\chi^2(a)$ by linear and quadratic dependence on $\{a\}$, X respectively LM versus Hessian method

LM and Hessian results are in a good agreement

• " $\sigma_{max} - \sigma_{min}$ " method underestimates PDF uncertainty by about factor 2

• qualitative agreement with $gg \rightarrow H$ (Djouadi,Ferrag) and $gb \rightarrow Hb$ (Dawson,Jackson,Reina,Wakeroth(Tev4LHC)) PDF (41 set) uncert results

Cross section uncertainty band

PDF uncertainties dominate the scale ones at Tevatron

σ **(bb)**

- Scale uncertainties dominate the PDF ones for $M_H < 300~{\rm GeV}$ at LHC where one could expect high CS and possible precise measurements
- the overall uncertainty 25%
 ightarrow 10% for M_H =100
 ightarrow 300 GeV at LHC

- ► $b\bar{b} \rightarrow H$ process could be the central one for Higgs boson search, (SUSY, 2HDM, Technicolor) \Rightarrow the understanding of this process is crucial
- ► At Tevatron, PDF uncertainty is dominant, therefore it has a crucial effect on the total uncertainty bringing it to the level of $\sim 20 - 30\%$ (recent $D\emptyset$ paper on $Hb \rightarrow bb\overline{b}$ hep-ex/0504018)
- At LHC, the scale uncertainty is dominant: up to 15% for M_H < 300 GeV. In this region one could expect high CS and possible precise measurements – we need better theoretical control of the scale uncertainty in this region
- For $M_H > 300$ GeV, PDF uncertainty becomes dominant at LHC
- Lagrange Multiplier and Hessian methods are in a good agreement, while the method of "two extreeme values" underestimates PDF uncertainty by factor 2
- it is important to apply similar technique for PDF uncertainty of principal shape distributions

Understanding PDF uncertainties

Uncertainty of the gluon-gluon luminosity functions at Tevatron and LHC

History of $Q\bar{Q} ightarrow H$ and its present status

► Eichten, Hinchliffe, Lane, Quigg(84): tt → H at the SSC Olness and Tung (87): "When is a heavy quark not a parton?" elaborated teqnique for combining QQ → H with higher order corrections Dicus and Willenbrock(89); Dicus, Stelzer, Sullivan, Willenbrock(99); Balazs, He, Yuan(99);

Campbell, Ellis, Maltoni, Willenbrock (02); Cao, Gao, Oakes, Yang (02) (SUSY); Maltoni, Sullivan, Willenbrock (03); Hou, Ma, Lei, Zhang (03) (SUSY); Ditmaer, Kramer, Spira (03); Hou, Ma, Zhang, Sun, Wu (03);

Dawson, Jackson, Reina, Wackerot (03,04); Boos, Plehn (03); Harlander, Kilgore (03); Kramer (04); Field (04)

▶ big progress in understanding $b\overline{b}(gg) \rightarrow H(b\overline{b})$ process and reduction of scale uncertainties!

What is PDF Uncertainty???

Ingredients of

Factorization

$$f_{i/H}(\xi, \mu^{2}) = \int_{-}^{} \frac{dy^{-}}{4\pi} e^{-i\xi p^{+}y^{-}} \left(H(p) \mid \overline{\psi_{i}}(0^{+}, y^{-}, \overline{0}_{\perp}) \gamma^{+} P \psi_{i}(0^{+}, 0^{-}, \overline{0}_{\perp}) \mid H(p) \right)$$

$$P = P e^{-ig \int_{0}^{y^{-}} dy^{-} A_{a}^{+}(0^{+}, y^{-}, \overline{0}_{\perp}) t_{a}}$$

where Z is a collinear projection operator:
$$Z^2 = Z$$
, and $Z(1-Z) = 0$,
 $z = \frac{1}{4} \gamma_{\alpha\alpha}^{-}, \gamma_{\beta\beta}^{+} (2\pi)^{4} \delta (k^{+} - \ell^{+}) \delta (k^{-}) \delta^{2} (\hat{k}_{T}^{2})$

Extend to massive case:

$$\mathbf{Z} = \frac{1}{4} \left(\frac{\mathbf{k} \cdot \mathbf{y}_{\alpha\alpha}^{+} + \mathbf{m}}{\mathbf{k}^{+}} \right) \mathbf{y}_{\beta\beta}^{+} (2\pi)^{4} \delta (\mathbf{k}^{+} - \ell^{+}) \delta (\mathbf{k}^{-} - \mathbf{m}^{2} / 2\mathbf{k}^{+}) \delta^{2} (\mathbf{k}_{T}^{2})$$

Mass-Independent VS. Mass Dependent PDF's

... or why the mass doesn't matter in the evolution

DGLAP Equation and the Heavy Quark PDF

Splitting Function

$${}^{1}P_{g \to q} = \frac{1}{2} [x^{2} + (1 - x)^{2}] + \left(\frac{M_{H}^{2}}{\mu^{2}}\right) [x(1 - x)]$$

Effect of Heavy Quark Mass in the Calculation

In Summary:

Near threshold $(M_{H} \sim Q)$, mass effects cancel between HE and SUB

Above threshold $(M_{H} \ll Q)$, mass effects can be ignored

Effect of Heavy Quark Mass in the Calculation is Trivial 0.08 0.08 Massive Massive HF 0.07 0.07 Massless Massless 0.06 0.06 F 2, 0.05 TOT 0.05 Q =10 GeV 2 **SUB** 0.04 0.04 x = 0.050.03 0.03 Q =10 GeV HE-SUB HE-SUB 0.02 0.02 x = 0.050.01 0.01 0 0 2 1 3 10 15 20 7 5 2 3 10 15 20 5 7 8 µ GeV µ GeV $HC = \int f(P \to g) \otimes \sigma(g \to c)$ $HE = \int f(P \to a) \otimes \sigma(a \to c)$ $SUB = \int f(P \to g) \otimes^{1} P(g \to a) \otimes \sigma(a \to c)$

Simplified ACOT

... or why the mass doesn't matter in the matrix element

Simplified-ACOT Scheme for Heavy Quarks

How does S-ACOT Compare???

Retention of mass terms provides no additional information

Benefit of using the heavy quark PDF:

Typically the gluon and heavy quark have opposite dependence

Subtraction

Issues for $bb \rightarrow H$

Conclusions:

* PDF uncertainties can be dominant gluon & b PDF's closely related: $f_b = f_a \otimes P_{a \rightarrow b}$

* Mass-Independent PDF Evolution No benefit by including masses

* ACOT vs. Simplified-ACOT No benefit by including masses

* S-ACOT calculation of bb \rightarrow H: Errrrors of order: O(a_s³) and O(L²/Q²) No errors of order: O(m²/Q²) Massless initial state \Rightarrow Block-Nordsieck satisfied