SM and Higgs WG (II)

"Experimental view" on subjects of sub-groups

A. Nikitenko IC, London Les Houches 12th May 2005

We will start in 2007

> construction of the ATLAS detector underground
> two (out of eight parts of the barrel toroid)

SM benchmarks and PDF's

Message from 1st session :

first, we should discover Standard Model

http://www.pa.msu.edu/~huston/Les_Houches_2005/Les_Houches_SM.html

~ 10⁷⁻⁸ Z->II, W->Iv on tape during physics run in 2008 (~ 10fb⁻¹)

Z, W, tt cross sections and expected number of events after trigger in CMS with 10 fb⁻¹

channel, NLO σ x Br	Level-1 + HLT efficiency	events for10 fb ⁻¹
W->e v, 20.3 nb	0.25	5.1 x 10 ⁷
W->µv, 20.3 nb	0.35	7.1 x 10 ⁷
Z->ee, 1.87 nb	0.53	1.0 x 10 ⁷
Z->μμ, 1.87 nb	0.65	1.2 x 10 ⁷
tt~->µ+X, 187 pb	0.62	1.2 x 10 ⁶

J. Campbell, R.K. Ellis, D. Rainwater hep-ph/0308195

W/Z+nJ+X NLO predictions at LHC with cuts :

 $p_T^{l} > 15 \text{ GeV}$ $|\eta l| < 2.4$ $p_T^{j} > 20 \text{ GeV}$ $|\eta^{j}| < 4.5$ $\Delta R l > 0.4$ $\Delta R l > 0.2$

process	σ_{LO}	σ_{NLO}
$e^+\nu_e + X$	5670	6780^{+290}_{-130}
$e^-\bar{\nu}_e + X$	3970	$4830\substack{+210 \\ -90}$
$e^+e^- + X$	803	915 ± 31
$e^+\nu_e j + X$	1660	$1880\substack{+60 \\ -50}$
$e^-\bar{\nu}_ej+X$	1220	1420 ± 40
$e^+e^-j + X$	248	288^{+8}_{-7}
$e^+\nu_e jj + X$	773	669^{+0}_{-18}
$e^-\bar{\nu}_ejj+X$	558	491^{+0}_{-7}
$e^+e^-jj + X$	116	105^{+1}_{-5}

~ 10⁶ tt->µ+X with 10 fb⁻¹ W/Z bb + X

|η^b| < 2.5

process	σ_{LO}	σ_{NLO}
$e^+\nu_e b\bar{b} + X$	$1.30\substack{+0.21 \\ -0.18}$	$3.06\substack{+0.62 \\ -0.54}$
$e^-\nu_e b\bar{b} + X$	$0.90\substack{+0.14 \\ -0.12}$	$2.11\substack{+0.46 \\ -0.37}$
$e^+e^-b\bar{b}+X$	$1.80\substack{+0.60\\-0.40}$	$2.28^{+0.32}_{-0.29}$

Project running over two sessions

Analyses by final state signatures: *ΙΙ*, γγ, jj, ...

Proposal for (B)SM working group

University of Oslo

- Motivation:
 - Understand the SM predictions and establish their uncertainty band
 - Every prediction outside this band is a signature of new physics
- 1st year of LHC:
 - Simple topologies and robust analyses:
 - Di-leptons, di-photons, dijets...

2 sides: Limits of the SM and possible BSM signature

Output of 1st session- Benchmark: Drell-Yan (Ferrag)

γγ, jj to be continued during 2nd session. Join this project

b(b)h, b(b)Z, gg(b)->t(b)H⁺

Higgs production in association with heavy quarks

Tevatron bb ϕ (->bb) ϕ =h, A, H LHC bb ϕ (-> $\tau\tau$, $\mu\mu$) ϕ =h, A, H

Discovery/measurement

Both heavily relay on Monte Carlo of ϕ **production**

tan(β) measurement with MSSM bbA, A-> 2τ

Syst. uncertaities

$\Delta \epsilon_{b-tag}$	2.0%
$\Delta \epsilon_{\tau\text{-tag}}$	2.5%
$\Delta \epsilon_{calo}$	3.0%
$\Delta\sigma_{th}$ nlo	20%
$\Delta \mathbf{Br}_{\mathbf{SMinp}}$	3%
Δσ(ΔΜττ)	10%
∆bkg	10%
∆MC	?????

Cross section exhibits a large sensitivity to $tan(\beta)$ and thus can add a significant observable to a global fit of the SUSY parameters

R. Kinnunen, S. Lehti, F. Moortgat, A. Nikitenko, M. Spira. CMS Note 2004/007

Single "b – tagging" with PYTHIA6.227: gb->bH vs gg->bbH $p_T^b > 20$ GeV, $|\eta^b| < 2.4$

Single "b -tagging" efficiency (no jet veto yet, used in CMS)

m _H , GeV	gg->bbH	bg->bH
120	31 %	19%
200	40 %	11%

p_T Higgs with PYTHIA6.227: gb->bH vs gg->bbH affects missing E_T and Higgs mass reconstruction

Comparison with NLO is on the way ...

b(b)H within MC@NLO is VERY desirable

Z+b(b) as benchmark for gb->bh (gg->bbh)

Z+b can be used as a benchmark for gb->hb at LHC: test N(N)LO predictions and Monte Carlo.

However, be careful:

at Teatron both contributions gb->Zb and qq~->Zbb are important while only gb->Zb is dominant at LHC and thus relevant to gb->hb [J. Campbell et all hep-ph/0312024]

N(N)LO calculations are available for bb->h, gb->hb and gg->bbh and compared in J. Campbell et al, arXiv:hep-ph/0405302

How well we can select it at LHC ?

gg->H->WW(*)->II

- gg->WW background. Monte-Carlo
- WbWb = tt+Wt with jet veto ? NLO
- "tt" bkg. extrapolation errors: th. + exp.
- Uncertainty of jet veto for gg->H

"Counting experiment" – no sidebands

Discovery reaches with H->WW->2I

+/- 5 % bkg. systematic were taken both in ATLAS and CMS; need more justification; prospects for **tt**~ bkg. uncertainty in h->ww->2I; extrapolation method N. Kauer. hep-ph/0404045: ATLAS/CMS cuts (parton level) + ε_{b-tag} method (D. Zeppenfeld, N. Kauer) : N_{bkg} = ($\sigma_{bkg} \varepsilon_{bkg} / \sigma_{ref} \varepsilon_{ref}$) N _{ref}

extrapolation involves also experimental uncertainties; how are they big ?

- WbWb = tt + Wt with jet veto ?

Solution 1. Wt with Toprex where one b coming from from ISR. BUT too soft p_T of b.

Solution 2. by Fabio Maltony: Madgraph with full WbWb matrix elements, taking out ttbar-onshell contributions (not gauge invariant !)

- How about NLO; is NLO tt~ + NLO Wt correct way ?

 - φ_{II}: WbWb with PYTHIA W decays = WbWb with MadGraph decays = full lvlvbb ?

Jet veto in gg-h with MC@NLO, PYTHIA6.3, HERWIG and CASCADE. Giovanna Davatz

Differences vary over the p_T spectrum:

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ε up to 80 GeV
PYTHIA	0.61	0.72
HERWIG	0.54	0.68
MCatNLO	0.59	0.69
CASCADE	0.56	0.65

Within MC@NLO jet veto uncertainty should be estimated changing the scale (S. Frixione); uncertainty due to UE.

gg->WW background to gg->WW->2I

Calculations from two groups:

- T. Binoth, M. Ciccolini, N. Kauer, M. Krämer (hep-ph/0503094) : Off-shell Ws, only light quarks in the loop
- P. Marquard, J. J. van der Bij (M. Dührssen, K. Jakobs) (hep-ph/0504006) :

On-shell Ws, heavy quark loop

Context: Background process to $gg \rightarrow H \rightarrow WW$

Figure 1: Generic Feynman diagrams for the process $gg \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu'$.

Contribution of gg->W*W* background to the total W*W* hep-ph/0503094

	$\sigma(pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell}' \nu')$ [fb]				
		q	\bar{q}	$\sigma_{\rm NLO}$	$\sigma_{\rm NLO+gg}$
	gg	LO	NLO	$\sigma_{\rm LO}$	$\sigma_{ m NLO}$
σ_{tot}	$53.61(2)^{+14.0}_{-10.8}$	$875.8(1)^{+54.9}_{-67.5}$	$1373(1)^{+71}_{-79}$	1.57	1.04
σ_{std}	$25.89(1)^{+6.85}_{-5.29}$	$270.5(1)^{+20.0}_{-23.8}$	$491.8(1)^{+27.5}_{-32.7}$	1.82	1.05
 σ_{bkg}	$1.385(1)^{+0.40}_{-0.31}$	$4.583(2)^{+0.42}_{-0.48}$	$4.79(3)_{-0.13}^{+0.01}$	1.05	1.29

Table 1: Cross sections for the gluon and quark scattering contributions to $pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu'$ at the LHC ($\sqrt{s} = 14$ TeV) without selection cuts (*tot*), with standard LHC cuts (*std*: $p_{T,\ell} > 20$ GeV, $|\eta_{\ell}| < 2.5$, $\not{p}_T > 25$ GeV) and Higgs search selection cuts (*bkg*, see main text) applied. The

After all cuts including jet veto. But LO gg->WW does not include jet veto, thus gg->WW contribution could be smaller, but NLO gg->WW ?

Estimates of WW background to gg->H->WW->2I from the data

Michael Duhrssen (first session)

WW background propagation in ϕ_{ll} using data will be problematic, since gg->WW part behaves similar to signal and does not show up in a signal free region of high ϕ_{ll} .

VBF Higgs

- Z+2(3)J background; "Zeppenfeld plot" (TeV4LHC)
- Jet veto uncertainties (UE, ...)
- Fake jets suppression
- VBF Higgs in MC@NLO (project started in Les Houches: C. Oleari, V. del Duca)

ATLAS: contribution of VBF channels to SM Higgs discovery

Going to full VBF simulation: challenge I

improve calo missing E_T: one of the most suffering Higgs channels is light Higgs in qq->qqH, H->2τ->lepton + jet

First try in 2002. CMS, ORCA4

Jet veto in VBF (WW->H) production

first discussed in :

Yu. Dokshitzer, V. Khoze and S. Troyan, Sov.J.Nucl. Phys. 46 (1987) 712 Yu. Dokshitzer, V. Khoze and T. Sjostrand, Phys.Lett., B274 (1992) 116

From D. Zeppenfeld talk on TeV4LHC, 2004

Challenge 2: "correct" generation of 3rd jet for jet veto

ALPGEN Z+3J with VBF + PYTHIA6.227

ALPGEN Z+2J with VBF+ PYTHIA6.227

A. Nikitenko in collaboration with Fulvio Piccinini and M. Mangano

"Zeppenfeld plot" $\eta_o = \eta_{j3} - 0.5(\eta_{j1} + \eta_{j2})$

Tevatron W+2(3)J MC , $\Delta \eta_{j1j2}$ > 2.0 shown by J. Huston in 1st session

Tag jets > 15 GeV/c; 3rd jet > 8 GeV/c

LHC Z+2(3)j MC , $\Delta\eta_{j1j2}$ > 4.0

No ME+PS yet

Going to full VBF simulation: challenge III : fake jets degrade jet veto performance

Rapidity of the central jet in Higgs events; CMS; full simulation, L=2x10³³cm⁻²s⁻¹.

"bkg. like" behaviour for soft jets; fake jets: pile up+UE+detector

problem is solved using calo -tracker jet matching

- Improvement in the η distribution but still some excess jets in the central region
- Zeppenfeld behaviour is reproduced with much less fake jets

<u>M. Takahashi</u> + A. Nikitenko

Events Passing the Jet Veto

		Number of events	Fraction over VBF events (%)	Fraction passing the veto(%)	
VBF selected		12112	-	-	
No additional jet with raw $E_T > 10$		3950	-	32.6	
3rd MC jet (p _T >20)		1657	13.7	86.3	
3rd jet (raw E _⊤ >10)		4820	40.0	60.0	•
3rd jet matched with MC*		1216	10.0	90.0	
3rd jet	α > 0 .	2142	17.7	82.3	
(raw E _T >10)	α > 0.2	1844	15.2	84.8	•
	α > 0.4	1418	11.7	88.3	

* Additional jet with raw E_T >10 that has a matching MC jet with p_T >20

M. Takahashi + A. Nikitenko

Monte Carlos huge world ! I will mention only one particular issue discussed in 1st session : UE "benchmarks" to be considered in ATLAS and CMS analyses within pythia6.2 :

 Compare CDF Tune A and ATLAS Tune;
 Consider variation of the most important parameters within the fit errors

MC tuning on min-bias and UE data; propogate to LHC

- isolation of $\gamma,\,\tau,\,e,\,\mu$
- jet energy reconstruction ("pedestal")
- jet veto
- forward jet tagging in VBF Higgs

Very important to understand uncertainties

PYTHIA6.2 tunnings (on the way for 6.3...)

R. Field; CDF UE tuning method

Comments	CDF – Tune A (PYTHIA6.206)	PYTHIA6.214 – Tuned (ATLAS)
Generated processes (QCD + low-pT)	Non-diffractive inelastic + double diffraction (MSEL=0, ISUB 94 and 95)	Non-diffractive + double diffraction (MSEL=0, ISUB 94 and 95)
p.d.f.	CTEQ 5L (MSTP(51)=7)	CTEQ 5L (MSTP(51)=7)
Multiple interactions models	MSTP(81) = 1 MSTP(82) = 4	MSTP(81) = 1 MSTP(82) = 4
pT min	PARP(82) = 2.0 PARP(89) = 1.8 TeV PARP(90) = 0.25	PARP(82) = 1.8 PARP(89) = 1 TeV PARP(90) = 0.16
Core radius	40% of the hadron radius (PARP(84) = 0.4)	50% of the hadron radius (PARP(84) = 0.5)
Gluon production mechanism	PARP(85) = 0.9 PARP(86) = 0.95	PARP(85) = 0.33 PARP(86) = 0.66
a_{s} and K-factors	MSTP(2) = 1 MSTP(33) = 0	MSTP(2) = 1 MSTP(33) = 0
Regulating initial state radiation	PARP(67) = 4	PARP(67) = 1

LHC predictions: PYTHIA6.214 (ATLAS tuning) vs. CDF tuning; different predictions !

Transverse < N_{chg} >

12 PYTHIA6.214 - tuned **CDF** tuning 10 • CDF data 8 $dN^{UE}_{ch}/d\eta \sim 30$; min-bias ~7 6 ีdN^{∪E}cb</sub>/d̂η ~ 20; min-bias ~ 6 4 dN^{ΰE}cħ⁷dη 10; min-bias ~ 4 ~ 2 **40** 10 20 30 50 0 P_t (leading jet in GeV)

LHC predictions for different generators

Consider PYTHIA and JIMMY underlying events tuned to the Tevatron data

effect of UE on isolation in H->ZZ->4 μ A. Drozdetski 1st session. ATLAS tune + change PARP(82) within 3 σ

 $P_{T}cut_off = 2.9 \text{ GeV} - \text{default scenario}$ $P_{T}cut_off = 2.4 \text{ GeV} - \text{pessimistic scenario}$ $P_{T}cut_off = 3.4 \text{ GeV} - \text{optimistic scenario}$

PYTHIA6.2

ATLAS Tune + change of p_T cut off for UE within 3σ . Proposed by Paolo Bartalini, CMS contact for UE tunning

NLO for important processes.

S. Dittmaier : Theorists need a clear list of important processes including arguments for "why calculation and what ?!"

List given by J. Huston on 1st session matches well the ability of theoretical calculations and LHC experimental analysis needs

feasible (?) until LHC starts (SM):

From talk of G. Heinrich "One-loop corrections to many-particle production"

See also talks of Z. Kunszt and Y. Kurihara on 1st session list to be discussed/modified/completed !

- $\begin{array}{ccc} \bullet & 2 \to 3 \\ \bullet & pp \to VV \ jet \end{array}$
 - $p p \to V V V$
- $2 \to 4$
 - $pp \rightarrow 4 jets$

 - $\ \, \ \, pp \to t\bar{t}\,H+jet$
 - $\ \ \, pp \rightarrow V + 3\,jets \ \ \,$
 - $pp \rightarrow VV + 2jets$
 - $pp \rightarrow VVV + jet$

calculations/collaborations to be started at Les Houches

Some already expected "events" during 2nd session

- MC generators session on standartization of MC's in c++ (org. by S. Frixione)
- Discussion on interplay between SUSY and Higgs searches: SUSY-> Higgs->SUSY (org. by S. Moretti)
- In tth group : report on NLO for ttA at LHC
- In EW : presentation on EW corrections for high $E_{\rm T}$ jet production by S. Moretti
- Hard work in groups enjoy it 🙂