$W^{\pm}H^{\mp}$ Production at LHC with Subsequent $H^{\pm} \rightarrow \tau^{\pm}\nu$ Decays

Stefan Hesselbach High Energy Physics, Uppsala University

D. Eriksson, J. Rathsman

Les Houches 2005

May 2005

Motivation

$$W^{\pm}H^{\mp}$$
 production and $H^{\pm} \rightarrow tb$ decay:
 large cross section [Barrientos Bendezú, Kniehl, '98; Brein, '02]
 however, irreducible background from $t\bar{t}$ production [Moretti, Odagiri, '98]

Motivation

- Here: $W^{\pm}H^{\mp}$ production and $H^{\pm} \rightarrow \tau^{\pm}\nu$ decay
 Suppression of background by appropriate cuts
 [Assamagan, Coadou, '02]
- In complex MSSM or general CP-violating 2HDM
 - \rightarrow Effects of CP violation (?)

[Akeroyd, Baek, '00]

Signal

.

•
$$b\bar{b} \to W^{\pm}H^{\mp}$$

Implemented as external process in PYTHIA

- Up to now: \rightarrow Parton level
 - \rightarrow Tree level, however running m_t , m_b and α_{em} in couplings
- Decays $H^{\pm} \rightarrow \tau \nu$ and $W^{\pm} \rightarrow jj$ in PYTHIA
- $BR(H^{\pm} \rightarrow \tau \nu)$ from FeynHiggs
- With initial state radiation: bb̄ in final state However: preferably in forward/backward region

• Signature: (I)
$$2j + \tau + \not p_{\perp}$$
 or (II) $2j + \tau + \not p_{\perp} + 2b$

Preliminary results, ...

Cross section

 $W^{\pm}H^{\mp}$ Production at LHC with Subsequent $H^{\pm} \rightarrow \tau^{\pm}\nu$ Decays 5

Background for $W^{\pm}H^{\mp}$ at LHC

- Up to now: Parton level with smearing
- Signature (I): $2j + \tau + \not p_{\perp}$ Signature (II): $2j + \tau + \not p_{\perp} + 2b$
- Background (I): W + 2j; WW; WZ + 2j; tt̄ → WW + 2b and b untagged
 Background (II): W + 2b + 2j, tt̄ → WW + 2b
- Simulation of (I) with W + 2 jets routine of Alpgen Cross checks with MadGraph/MadEvent and PYTHIA ($t\bar{t} \rightarrow WW$ + 2b and b untagged)
- Simulation of (II) with W + bb + 2 jets routine of Alpgen $(t\bar{t} \text{ not included})$
 - $t\bar{t}$ analysed with <code>PYTHIA</code>

Simulation of W + 2 jets with Alpgen

- \checkmark $\sigma \sim 10^4$ pb without cuts
- "Basic cuts" for background:

$$\begin{array}{l} p_{\perp,\tau} > 60 \; {\rm GeV}, \; \not p_{\perp} > 60 \; {\rm GeV}, \; p_{\perp,j} > 20 \; {\rm GeV}, \\ \eta_{\tau,j} < 2.5, \; \Delta R(\tau,j) > 0.5, \; \Delta R(j,j) > 0.4, \\ 70 \; {\rm GeV} < m_{jj} < 90 \; {\rm GeV}, \; m^T(\tau,\not p) > 100 \; {\rm GeV} \\ \Rightarrow \; \sigma = 250 \; {\rm fb} \\ ({\rm signal: 15 (42) \; fb \; for \; tan \; \beta = 30 (50), \; m_{H^{\pm}} = 175 \; {\rm GeV})} \end{array}$$

- Higgs signal in m^T distribution best visible for $p_{\perp,j_{soft}} > 25$ GeV, $p_{\perp,j_{hard}} > 50$ GeV → $\sigma = 102$ fb (signal: 9 (28) fb)
- Cross check with MadEvent:
 Process to request: P P > j j vt ta+
 Distributions agree well

$m^T(au, p)$ distribution

For $m_{H^{\pm}}$ = 175 GeV and cuts $p_{\perp,j_{soft}}$ > 25 GeV, $p_{\perp,j_{hard}}$ > 50 GeV:

 $W^{\pm}H^{\mp}$ Production at LHC with Subsequent $H^{\pm} \rightarrow \tau^{\pm}\nu$ Decays 8

Simulation of W + 2b + 2 jets

- Alpgen
 - With basic cuts:

 $p_{\perp,\tau} > 60 \text{ GeV}, \not p_{\perp} > 60 \text{ GeV}, p_{\perp,j} > 20 \text{ GeV}, p_{\perp,b} > 20 \text{ GeV},$ $\eta_{\tau,j} < 2.5, \Delta R(\tau, j) > 0.5, \Delta R(j, j) > 0.4,$ $70 \text{ GeV} < m_{jj} < 90 \text{ GeV}, m^T(\tau, \not p) > 100 \text{ GeV}$ $\Rightarrow \sigma = 21 \text{ fb}$

- When both *b* escape ($p_{\perp,b}$ < 25 GeV or η_b > 2.5): $\sigma = O(1 \text{ fb})$
- **9** $t\bar{t}$ with PYTHIA:

With basic cuts: σ = 16 fb