

Higgs with tops working subgroup

People and topics:

M. Spira, M. Kraemer: NLO ttbarh_0, ttbarA calculations at TeVatron and LHC
P. Skands (w/ PYTHIA team): ttbar + jets, hard jet rates in PYTHIA 6.3, possible impact on ttbarH at LHC
R. Frazier, S. Gascon, A. Nikitenko (with M. Spira, F. Maltoni, F.Piccinini and ALPGEN team): ttbarH(h_0), H(h)→2gamma in CMS
F. Maltoni (w/K.Paul, T.Stelzer, S.Willenbrock): t+H+q at LHC

M. Spira, M. Kraemer: NLO ttbarh 0, ttbarA calculations

P. Skands, C.Oleari, S. Schumann, J. Campbell and S. Gascon): ttbar + jets, hard jet rates in PYTHIA 6.3, possible impact on ttbarH at LHC

PYTHIA 6.3

- "0'th" approach to matching: improve parton shower algorithm itself (if doable, gives fast results for "all" processes)
- Completely rewritten parton showers
 - Based on dual description of QCD: partons ↔ dipoles
 - Ordered in (lightcone) <u>pT</u> of branchings
 Sudakovs > Priority to high-pT branchings
 - ISR + FSR, QCD + QED

(old Q2-ordered showers also still kept as option)

 $p_{\perp ext{evol}}^2 \equiv z(1-z)(m^2 - m_0^2)$

Sjostrand, Mrenna, PS

s) an (2

 $P_{
m q
ightarrow
m qg}(z)$

observables. Use pt of the ttbar pair in inclusive ttbar + X as a first benchmark (first preliminary plots from the 2^{nd} workshop session \rightarrow )

Questions raised by P. Skands study of ttbar + jets events comparing pt of jets generated with new PYTHIA 6.3 PS algorithm (pt**2 rather than Q**2 ordering) vs. 6.2:

Results indicate that new PS algorithm may more closely approximate ME code predictions (here, MadGraph) for jet Pt and hard jet rates at the TeVatron

Solution Issue for the workshop: Is the effect general to other observables, other processes and to the LHC?

Possible effect on ttbar_H visibility at the LHC: Comparison underway of 6.2 vs 6.3 on top of ME (ALPGEN) within official CMS framework (comparable implementation of UE nontrivial between two versions)

Solution PT of ttbar pair: good agreement between SHERPA, <u>MC@NLO</u> and NLO particularly at large values

Solution Relative insensivity to Q_{cut} value

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Advantage:

Presence of tt pair: high-multiplicity events
 Less vulnerable to QCD background than WH/ZH

Disadvantage:

Relatively low cross-section even compared to
 WH/ZH

Prior work in CMS: Generator-level studies of the SM (Ilyin et al, CMS NOTE 1997/101), and MSSM (R. Kinnunen & D, Denegri, CMS NOTE 1997/057) cases demonstrated S/B~1.

In ATLAS:Full simulation study in Physics TDR (based on thesis of G. Eymard (LAPP), S/sqrt(B)={4.3-2.8} for mH={100-140}, signal efficiency ~30%. CERN-ATL-COM-PHYS-2004-056 par Beauchemin, P and Azuelos, Georges "Search for the SM Higgs Boson in the gamma gamma + ETmiss channel" For 100fb-1, for ttbarh channel, for mH=120 GeV, S/B of ~2 (10.2 signal events for 5.4 background events).

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Signal Cross-sections--SM

Standard Model H

LO HQQ 1.1 (M. Spira), ALPGEN & MADGRAPH compared

eσ(ttH)x BR (H→γγ) from HDECAY 3.101 (Djouadi, Kalinowski, Spira)

Contractions (Beenakker, Dittmaier, Kramer, Plumper, Spira, Zerwas, hep-ph/0107081, 0211352) stabilize σ against renormalization scale, Kfactor~{1.2-1.4}

GUSE ALPGEN/MG for event generation since exact ME treatment ,conserves spin correlations in t decays

Strategy: Low-luminosity:γ/ signature to add events to WH/ZH and other channels for discovery . High-luminosity: reconstruct t masses for positive id: measure top Yukawa coupling

LO Background Cross-sections: Partial List

Irreducible:		Reducible:
Process	σ x BR (1 W->l ν)	Generator
tt γγ (1,2,3)	1.6, 6.1, 4,9 fb	AL,MG(1) (1,2)
bbγγ	221 fb	MG (1)
W γγ	23.6 fb	MG (2)
Ζγγ	27.0 fb	MG (2)

CTEQ5L, $m_{\gamma\gamma}$ >80 GeV + (1) \Rightarrow $p_{T\gamma}$ >20 GeV, η_{γ} <2.5 (2) \Rightarrow $p_{T\gamma}$ >15 GeV, η_{γ} <2.7 (3) \Rightarrow $p_{Tj,l,\gamma}$ >15 GeV, $\eta_{\gamma,j,l}$ <2.7, Δ R(l,j or j,j)>0.3 (4) \Rightarrow $p_{Tj,l,b>}$ 15 GeV, $\eta_{,b,l}$ <2.7, Δ R(Q,Q or l,j)>0.3 \approx Strong dependence on renormalization scale \approx Very preliminary, do not yet include K-Factors \approx As in WH/ZH, may have a need for generatorlevel preselections for some backgrounds

Suzanne	GASCON	-SHOTKIN	IPNL/UCB	Lvon I
Salamie	01100011		IIIII COOD	Lyoni

Process	σ	Generator
γγ + 1 jet	70.0 pb	AL(3)
$\gamma\gamma + 2jets$	60.4 pb	AL(3)
$\gamma\gamma + 3jets$	33.1 pb	AL(3)
γγ+4jets	15.3 pb	AL(3)
γ+2 jets	60.3 nb	AL(3)
γ+3 jets	26.8 nb	AL(3)
γ+4 jets	9.1 nb	AL(3)
γ + 5 jets	2.5 nb	AL(3)
tttt	2.9 fb	AL (4)
tttt + 1 jet	3.4 fb	AL (4)
ttbb	1.1 pb	AL (4)
ttbb + 1 jet	1.2 pb	AL (4)
bbbb	3.5 nb	AL (4)
bbbb + 1 jet	2.9 nb	AL (4)

 Incorporation of 'delicate' SM background processes in ME generators: ttγγ (+ njets), Wγγ (+ njets) [in test]; ttγ (+njets), bbγγ+(njets), Wbbarγγ (+ njets).. [to come soon]

- NLO cross-sections for myriad SM background processes
- NLO generators for myriad SM background processes (evaluate possible differences in distributions of discriminating variables wrt LO)
- ME/PS/Hadronization issues: (ME/PS matching, correct hard jet rates and effect on signal visibility (PYT 6.2 vs 6.3., currently 6.2))
- Evaluation of irreducible component of all reducible backgrounds at particle level for
 - First handle on 'dangerosity'
 - Finalize size and strategy (preselection?) for samples for full simulation
- Detector Simulation, Reconstruction, Pileup Issues:
 - Rates of fake photons/leptons from leptons/jets (instrumental /pileup background): what are single and double fake rates in our context? Can we afford to neglect some double-fake reducible background processes (e.g. Ijj, IIj, γjj) ?

Detailed simulation study for CMS physics Technical Design Report, complete particle-level study (at least) for proceedings......

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

F. Maltoni (w/K.Paul, T.Stelzer, S.Willenbrock): t+H+q at LHC

• $pp @ \sqrt{s} = 14 \text{ TeV}$

- the t-channel gives the largest contribution, about one order of magnitude smaller than $t\bar{t}h$ (note the different fall off, though)
- for $m_h < 120$ GeV we expect a cross section of about 100 femtobarns \Rightarrow no hope for $h \rightarrow \gamma \gamma$, but what about $h \rightarrow b\bar{b}$?

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I Report of 2nd session, SMH WG, 20 May 2005

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Higgs with tops working subgroup: Future Plans (Proceedings)

NLO ttbarh_0, ttbarA cross-section calculations at LHC and ratio of ttbarA/ttbarh 0 NLO cross-sections

Cross-check on comparison of hard jet rates between ME/new PS algorithm (PYTHIA 6.3) with SHERPA, <u>MC@NLO</u> and MCFM with ttbar + jets benchmark at LHC, extension to other observables

Sevaluation of impact on ttbarH visibility at LHC (CMS case)

Completion of ttbarH(h_0), H(h) → 2γ at particle level with CMS including complete ME treatment of irreducible and most reducible backgrounds

t+H+q at LHC : Actively searching experimental ideas to improve visibility!

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I Report of 2nd session, SMH WG, 20 May 2005

Probably triggering on the 'OR' of the following triggers is sufficient:

- **Di-photon trigger:** $P_t > 40$, 25 GeV
- Inclusive photon: P_t > 80 GeV
- Inclusive electron: P_t > 29 GeV
- Inclusive muon: P_t > 19 GeV

Signal Cross-sections--MSSM

Parameters used for maximal mixing scenario:

 μ = -200, M2 = 200, M_{SUSY} = 1TeV

$$M_{Gluino} = 800 \text{GeV}, A_t = 2450 \text{ GeV}$$

Results to be provided

- Signal efficiencies and significances for a range of interesting masses
- Reconstructed 2-photon mass peak
- Insight into instrumental and misidentification backgrounds (for example electron faking photon) which only can only come from a full simulation study.

2D/MSSM h⁰

- Signal efficiencies and significances for a grid of interesting or benchmark points in parameter space
- Reconstructed 2-photon mass peaks
- **Contribution/update to exclusion plot in tan** β vs. m_A phase space
- Possible extension to models beyond the MSSM

An SM or two-doublet neutral Higgs boson produced in association with a tt pair with $H(h^0) \rightarrow \gamma \gamma$ shares the following minimal signature with the WH and ZH channels just discussed (O.Ravat, M. Lethuillier [IPNL]):

2 isolated high-pt photons with $m_{\gamma\gamma}=m_{H}$: fully reconstructible mass peak

1 isolated high-pt tagging lepton from a t decay product (usually a W): Handle to beat down QCD background, and reconstruct primary vertex. Less dependence on photon energy resolution than gluon fustion channel

Particular 2-doublet case of MSSM: gluon fusion production channel subject to suppression given top-stop degeneracy (maximal mixing), not true for associated production channels.

Backgrounds

Reducible:

ttγγ (+ njets^{)*,}

Process:

bbγγ+(njets)

(+njets)

Wγγ (+ njets)**, Zγγ (+ njets)**

IIγ(γ)[,] W(Z)+tt (+njets), W(Z)+bb **Generators (All LO):**

ALPGEN, MADGRAPH

MADGRAPH, COMPHEP MADGRAPH, ALPGEN

PYTHIA, COMPHEP ALPGEN

kW+mZ (+njets) ,tbbar (W) + j, ALPGEN t + jets, Wtbbar + jets

ALPGEN (Mangano,Moretti, Piccinini, Pittau, Polosa) '*'→processes specially added for this analysis '**'→ processes to be added for this analysis

MADGRAPH (Maltoni, Stelzer)

COMPHEP (Boos, Dubinin, Ilyin, Pukhov, Savrin)

PYTHIA (Lonnblad, Mrenna, Sjostrand, Skands) PHOTOS (Barberio, Was) used to generate radiation photons where not provided

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Backgrounds

Process: Generators: Reducible: $W\gamma$ (+ njets)^{**,} $Z\gamma$ (+ njets)^{**} MADGRAPH, ALPGEN Ιγ kW+mZ (+njets) ALPGEN **ALPGEN** W(Z)+tt (+njets), W(Z)+bb (+njets) bbγ (+njets), ttγ (+njets) ** **MADGRAPH, ALPGEN** bbtt (+njets), bbbb (+njets), tttt **ALPGEN** (+njets) γyj, yjj, **ALPGEN, (PYTHIA)** $m\gamma$ +njets, tbbar (W) + jets, t + jets, J Wtbbar + jets

Note: Several processes could contribute as both irreducible and reducible background and/or to several reducible 'signals'. Virtually any high-multiplicity process could be a reducible background.
Must watch out for double-counting of background!