gg->H->WW^(*)->2*l* group Les Houches 2005: preparation for Higgs discovery

"Counting" discovery : background knowledge and systematic is a key issue

gg->H->WW^(*)->II list of topics for Workshop

- gg->WW background.
 - Fetch gg->WW MC into CMS software; effect of showering in PYTHIA (isolation, jet veto).
 - Can it be separated in data from qq->WW ?
 Extrapolation uncertainties.
- WbWb background with jet veto
 - tt + Wt with jet veto. NLO
 - Effect of spin correlations in WbWb
 - Evaluation from data : theory + exp. systematic
- Uncertainty of jet veto in gg->H with different MC's and UE "benchmarks"

Gluon-induced WW background to Higgs boson searches at the LHC

Nikolas Kauer RWTH Aachen

in collaboration with T. Binoth, M. Ciccolini and M. Krämer

30 % of total WW background after all cuts ! "signal like behavior

$$gg \to W^{-*}W^{+*} \to \ell \bar{\nu} \bar{\ell'} \nu'$$
 (LO)

without W decays: J.J. van der Bij, E.W.N. Glover; C. Kao, D.A. Dicus

200K parton level gg->W*W*->4I events were simulated during Workshop by Nikolas Kauer and propogated for PYTHIA showering and hadronization using MadGraph format and Les Houches interface

CMS MCDB page

<mark>⊚-∺ LCG Monte-Carlo Ev</mark> Location <u>E</u> dit <u>V</u> iew <u>G</u> o	en <mark>ts DataBase - Konqueror</mark> Bookmarks <u>T</u> ools <u>S</u> ettings <u>W</u> indow <u>H</u> elp	?•□×
<u> </u> ♠ ♠ ŵ %	· 🔕 🧦 🐚 🛅 😂 🚭 🕵 🔍 🔍 🖆	é
Location: 🙆 http://	/cmsdoc.cem.ch/cms/generators/mcdb/	▼ 1
$\overline{\mathbb{N}}$	Monte-Carlo Events Data Base	
	LO GG->W*W*->2L EVENTS , L =E, MU, TAU	
HIGGS	LO gg->W*W*->2I events provided by Nikolas Kauer for gg->H->WW*->2I study during Les Houches 2005 Workshop. The information about generator can be found on Higgs group page	PUBLISH NEW DOCUMENT:
	published: 19/05/2005 author: Alexandre Nikitenko category: WW and n jets .	non
w and n jets	PHOTON + 3 JETS, QCD DIAGRAMS, COMPLETE TREE LEVEL SETS, COMPHEP, 850K EVENTS	authorized author
Z and n jets Gamma and	QCD fake background to the light Higgs signal in the W,Z fusion (gamma gamma + 2 jets channel). 850K event sample generated by CompHEP 4.2p1	authorized
n iets	published: 25/04/2005 author: Mikhail Dubinin category: Gamma and n jets .	author
WW and n	PP->TT~ + GAMMA GAMMA, T1(2)->WB->QQB, T2(1)->WB->B L NU (L=E,MU,TAU) GENERATED BY MADGRAPH II	
jets 77 and n	pp->tt~ + gamma gamma, t1(2)->Wb->qqb, t2(1)->Wb->b I nu (I=e,mu,tau) generated i with MadGraph II; gammas from	administrators area
jets	published: 25/03/2005 author: Alexandre Nikitenko category: TOP	
WZ and n	EW TAUTAU+JJ WITH MADGRAPH. VBF AND MTAUTAU PRESELECTIONS WERE APPLIED	HELP
Gamma	pp->tautau jj with MadGraph for qqh, h->invisible study. VBF and Mtautau preselections were applied published: 25/03/2005 author: Alexandre Nikitenko category: Z and n jets .	

Questions :

how much is the influence of jet veto, isolation due to ISR ? should we take it into account ?

gg->W*W*->2l efficiency Giovanna Davatz and Anne-Sylvie Giolo

Isolation + jet veto with ISR bring ~ 20 + 10 % of reduction in σ_{LO}

	Pythia without ISR	Pythia with ISR
Basic cuts	0.47 isola	ation 0.34
+ jet veto 20 GeV		0.28
+ jet veto 30 GeV		0.31
Full selection cuts	0.025 isola	ation 0.017
+ jet veto 20 GeV		0.014
+ jet veto 30 GeV		0.015

tt + Wt after jet veto are comparable Normalization at NLO

- in a gauge invariant way
- in a generator friendly way

Action plan by Fabio Maltoni, John Campbell and Scott Willenbrock:

- Check that the neglected contributions are small in various areas of phase space
- Provide reference numbers for normalization of background

Effect of spin correlations in WbWb background Anne-Sylvie Giolo

Selection efficiency: Cross section after cuts $(\sigma_{tot}(pp \rightarrow wbwb) \times BR(e,\mu,\tau) = 60.6pb)$

	W decayed in MadGraph	W decayed in Pythia
2 isolated leptons (p _t >10GeV, η <2)	11pb	12pb
Jet veto (pt>30GeV, η <2.5) Et ^{miss} >40GeV	400fb	410fb
φ _{ll} <45⁰ 5GeV <m<sub>ll<40GeV</m<sub>	34fb	30fb
30GeV <pt<sup>max(lep)<55GeV pt^{min}(lep)>25GeV</pt<sup>	4.7fb 10	% 5.3fb

tt bkg. evaluation from data and th. : 1st proposal

tt reference region:

- same selections on leptons and MEt
- <u>no</u> jet-veto
- jet Pt > 50 GeV
- <u>one</u> b-tagged jet (no veto on extra jets)

Results for LO signal, DY and tt. Wt not included

	Events* for 10 fb ⁻¹
Higgs	0
DY	15
tt	280

* 2 μ final state

Les Houches Workshop, Marco Zanetti - INFN Padova

Exploit background extrapolation method proposed by N. Kauer and D.Zeppenfeld in Les Houches 2003

tt bkg. evaluation from data and th. : 2nd proposal

tt Reference Region: same selections as before but NO request for a b-tagged jet

- To be applied only for different flavor leptons final state (avoid DY)
- Topology: μ[±] + *e*^{-/+} +MEt+1j. Contamination from WW+j(s) (negligeble?)
- Systematics coming from uncertainty on jets energy scale (~10%) and from jets misidentification. (10⁻⁴ for *e*'s and 10⁻⁵ for μ 's). Possible contamination by W+2j

	Events* for 10 fb ⁻¹	
Higgs	70	
tt	1050	

Les Houches Workshop, Marco Zanetti - INFN Padova

$gg \rightarrow H$ for different MCs:

uncertainties due to jet veto

Giovanna Davatz, ETH Zurich

p_T Higgs varies for different MCs (new showering for Pythia used)

Efficiency numbers of the jet veto

Differences vary over the p_T spectrum:

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ϵ up to 80 GeV
PYTHIA	0.53	0.68
HERWIG	0.54	0.68
MCatNLO	0.58	0.69
CASCADE	0.55	0.65

 \rightarrow efficiency spread $\approx 10\%$

(without CASCADE up to 80 GeV 1%)

Efficiency numbers of the jet veto for MCatNLO, different scales

Integrated efficiency over whole p_T spectrum and up to a p_T Higgs of 80 GeV:

	ε total	ϵ up to 80 GeV
$\mu_{\text{fac,ren}}$ = M _H /2	0.585	0.685
$\mu_{fac,ren} = \mathbf{M}_{\mathbf{H}}$	0.583	0.692
$\mu_{fac,ren}$ = 2 M _H	0.582	0.687

 \rightarrow efficiency spread < 1%

Excellent collaboration between experimentalists and theorists in the group

THE END

PYTHIA6.2 tunnings (on the way for 6.3...)

R. Field; CDF UE tuning method

Comments	CDF – Tune A (PYTHIA6.206)	PYTHIA6.214 – Tuned (ATLAS)
Generated processes (QCD + low-pT)	Non-diffractive inelastic + double diffraction (MSEL=0, ISUB 94 and 95)	Non-diffractive + double diffraction (MSEL=0, ISUB 94 and 95)
p.d.f.	CTEQ 5L (MSTP(51)=7)	CTEQ 5L (MSTP(51)=7)
Multiple interactions models	MSTP(81) = 1 MSTP(82) = 4	MSTP(81) = 1 MSTP(82) = 4
pT min	PARP(82) = 2.0 PARP(89) = 1.8 TeV PARP(90) = 0.25	PARP(82) = 1.8 PARP(89) = 1 TeV PARP(90) = 0.16
Core radius	40% of the hadron radius (PARP(84) = 0.4)	50% of the hadron radius (PARP(84) = 0.5)
Gluon production mechanism	PARP(85) = 0.9 PARP(86) = 0.95	PARP(85) = 0.33 PARP(86) = 0.66
α_{s} and K-factors	MSTP(2) = 1 MSTP(33) = 0	MSTP(2) = 1 MSTP(33) = 0
Regulating initial state radiation	PARP(67) = 4	PARP(67) = 1

Discovery reaches with H->WW->2I

+/- 5 % bkg. systematic were taken both in ATLAS and CMS; need more justification;

"Counting experiment" – no sidebands

- basic cuts:
 - p^T lepton >20 GeV
 - $|\eta|$ lepton| <2.5
 - E^T miss > 25 GeV
 - 2 isolated leptons

- Full selection cuts: basic cuts +
 - phi(II) < 45
 - mass(II) < 35 GeV</p>
 - p^T Imin >25 GeV
 - 35 GeV < p^T Imax <50 GeV</p>

Selection cuts without jet veto, scaled

- NO ISR - With ISR

Results

$$pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu' \ (\sqrt{s} = 14 \text{ TeV})$$

	$\sigma(pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu')$ [fb]				
	gg	$q\bar{q}$		$rac{\sigma_{ m NLO}}{\sigma_{ m LO}}$	$\frac{\sigma_{\rm NLO+gg}}{\sigma_{\rm NLO}}$
		LO	NLO	10	nii o
σ_{tot}	$53.61(2)^{+14.0}_{-10.8}$	$875.8(1)^{+54.9}_{-67.5}$	$1373(1)^{+71}_{-79}$	1.57	1.04
σ_{std}	$25.89(1)^{+6.85}_{-5.29}$	$270.5(1)^{+20.0}_{-23.8}$	$491.8(1)^{+27.5}_{-32.7}$	1.82	1.05
σ_{bkg}	$1.385(1)^{+0.40}_{-0.31}$	$4.583(2)^{+0.42}_{-0.48}$	$4.79(3)^{+0.01}_{-0.13}$	1.05	1.29

std: $p_{T,\ell}>20~{\rm GeV},~|\eta_\ell|<2.5,~p_T>25~{\rm GeV}$ $M_W/2\leq\mu_{
m ren,fac}\leq 2M_W$

The pt spectrum of the leptons is harder when the W's are decayed in PYTHIA

p_T Higgs varies for different MCs old Pythia showering

