One-loop corrections to many-particle production

Gudrun Heinrich

University of Zurich

One-loop corrections to many-particle production – p.1

Contents

- Motivation
- Existing results/programs
- Recent developments
- Goals
- Prospects

LHC: Multi-particle final states of major importance

number of jets	3	4	5	6	7
$\sigma/{\sf nb}$	91.4	6.54	0.46	0.032	0.002

 $(p_T^{jet} > 60 \text{ GeV}, \theta_{ij} > 30^0, |\eta^j| < 3)$ [Draggiotis, Kleiss, C. Papadopoulos 02]

- Poor description by present event generators
- leading order:
 - large scale dependence
 - poor jet modelling
 - large sensitivity to cuts

need for NLO predictions

e.g. $2 \rightarrow N$ process

Diagram Generation

e.g. $2 \rightarrow N$ process

- Diagram Generation
- **Proof** Real Radiation $2 \rightarrow N+1$

e.g. $2 \rightarrow N$ process

- Diagram Generation
- **Proof** Real Radiation $2 \rightarrow N+1$
- **•** One-loop Amplitude (N+2)-point integrals

e.g. $2 \rightarrow N$ process

- Diagram Generation
- **Proof** Real Radiation $2 \rightarrow N+1$
- **•** One-loop Amplitude (N+2)-point integrals
- ideally: combine with Parton Shower

Loop Diagram Generators

- FeynArts/LoopTools
- GRACE 1-loop
- **QGRAF**

Loop Diagram Generators

- FeynArts/LoopTools
- GRACE 1-loop
- QGRAF

Real Radiation

- Phase space slicing
- Subtraction

mature state

One-loop amplitudes

hard scattering

- $2 \rightarrow 2$: "state of the art"
- $\checkmark 2 \rightarrow 3$: only few results
- $\checkmark 2 \rightarrow 4$: frontier

Status NLO $2 \rightarrow 3$ (LHC)

$$\begin{array}{l} pp \rightarrow 3\,jets \\ pp \rightarrow Vjj \quad (V = \gamma, Z, W^{\pm}) \\ pp \rightarrow \gamma\gamma j \\ pp \rightarrow Vb\bar{b} \\ pp \rightarrow V\bar{b}H \\ pp \rightarrow t\bar{t}H, b\bar{b}H \\ pp \rightarrow t\bar{t}j \end{array}$$

Campbell, De Florian, Del Duca, R.K. Ellis, Giele, Glover, Kilgore, Kunszt, Maltoni, Miller, Nagy, Trocsanyi, Beenakker, Dittmaier, Plümper, Spira, Zerwas, Dawson, Orr, Reina, Wackeroth, Brandenburg, Uwer, Weinzierl, ...

$$e^{+}e^{-} \rightarrow 4jets$$

$$e^{+}e^{-} \rightarrow \nu\bar{\nu}H$$

$$e^{+}e^{-} \rightarrow e^{+}e^{-}H$$

$$e^{+}e^{-} \rightarrow \nu\bar{\nu}\gamma$$

$$e^{+}e^{-} \rightarrow t\bar{t}H$$

$$e^{+}e^{-} \rightarrow ZHH$$

$$\gamma\gamma \rightarrow t\bar{t}H$$

Bern, Dixon, Kosower, Weinzierl, Kunszt, Frixione, Signer, Trocsanyi, Campbell, Cullen, Glover, Miller, Bélanger, Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu, Yasui, Jegerlehner, Tarasov, Denner, Dittmaier, Roth, Weber, Ren-You, Wen-Gan, Hui, Yan-Bin, Hong-Sheng, Pei-Yun,...

$e^+e^- \rightarrow 4$ fermions :

Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu 07/04: progress report Denner, Dittmaier, Roth, Wieders 02/05: complete electroweak $O(\alpha)$ corrections

some unphysical results

6-gluon amplitudes for Super-Yang-Mills $\mathcal{N} = 4$ Bern, Dixon, Dunbar,Kosower 94 All non-MHV 7-gluon amplitudes for Super-Yang-Mills $\mathcal{N} = 4$ Bern, Del Duca, Dixon, Kosower 04

6-scalar amplitudes in the Yukawa model

T. Binoth, J.Ph. Guillet, GH, C. Schubert 01

2-photon 4-scalar amplitudes in the Yukawa model

T. Binoth 02

public programs: (hadron collider)

- ${}$ $pp
 ightarrow 1, 2\, jets$ Ellis, Kunszt, Soper; Frixione
- JETRAD, DYRAD $pp \rightarrow 1, 2 jets$, $pp \rightarrow V + jet$ Giele, Glover, Kosower
- AYLEN/EMILIA $pp \rightarrow VV', pp \rightarrow V\gamma$ De Florian, Dixon, Kunszt, Signer
- HVQMNR heavy quark production Mangano, Nason, Ridolfi, Frixione
- DIPHOX, JETPHOX $pp \rightarrow \gamma \gamma, pp \rightarrow \gamma jet$ Aurenche, Binoth, Fontannaz, Guillet, Pilon, Werlen
- $\textbf{ } \textbf{ } \textbf{ } pp \rightarrow \gamma \, jet \,$ Gordon, Vogelsang; Frixione

[public] programs: (hadron collider)

- ${\ \, {oldsymbol{ 9} }} \quad pp
 ightarrow 3\, jets \,$ Giele, Kilgore
- NLOJET++ $pp \rightarrow \leq 3 jets$ Z. Nagy
- MCFM $pp \rightarrow V+ \leq 2 jets (V = W, Z), pp \rightarrow V + b\overline{b}$ J. Campbell, R.K. Ellis, D. Rainwater
- GRACE/1-LOOP

Bélanger, Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Shimizu

● $pp \rightarrow t\bar{t}H, b\bar{b}H$ Beenakker, Dittmaier, Plümper, Spira, Zerwas Dawson, Orr. Reina, Wackeroth

Combination with parton shower

- Collins, Zu 00
- Frixione, Nason, Webber (MC@NLO) 02
- Kurihara, Fujimoto, Ishikawa, Kato, Kawabata, Munehisa, Tanaka 02
- Krämer, Soper 03
- Nagy, Soper 05

An experimenter's wishlist

Hadron collider cross-sections one would like to know at NLO Run II Monte Carlo Workshop, April 2001

Single boson	Diboson	Triboson	Heavy flavour		
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$		
$W + b\bar{b} + \leq 3j$	$WW + b\bar{b} + \leq 3j$	$WWW + b\bar{b} + \leq 3j$	$t\overline{t} + \gamma + \leq 2j$		
$W + c\bar{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$		
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \leq 2j$		
$Z + b\bar{b} + \le 3j$	$ZZ + b\bar{b} + \leq 3j$	$WZZ + \leq 3j$	$t\overline{t} + H + \leq 2j$		
$Z + c\overline{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$tar{b}+\leq 2j$		
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\bar{b} + \leq 3j$		
$\gamma + b\bar{b} + \le 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$				
$\gamma + c\bar{c} + \leq 3j$	$\gamma\gamma + c\bar{c} + \leq 3j$				
	$WZ + \leq 5j$				
	$WZ + b\overline{b} + \leq 3j$	J. Campbell Collider Dhysics Workshop 04			
	$WZ + c\bar{c} + \leq 3j$	Collider Physics Workshop 04			
	$W\gamma + \leq 3j$				
	$Z\gamma + \leq 3j$				

Next to Loading Order QCD Tools: Status and Prospects - p.5/29

Calculation of one-loop amplitudes: methods

- fully numerical: sum over all cuts of the graphs before numerical integration over the loop momenta D.Soper
- algebraic/semi-numerical: separation into real and virtual contributions \rightarrow infrared poles \rightarrow subtraction
 - **•** Ferroglia, Passera, Passarino, Uccirati
 - Kurihara, Kaneko
 - Nagy, Soper
 - Binoth, GH, Kauer

Methods

- algebraic reduction:
 - Bern, Dixon, Kosower massless
 - Fleischer, Jegerlehner, Tarasov massive
 - Denner, Dittmaier massive and massless
 - Duplancic, Nizic massless
 - Giele, Glover, Zanderighi massless
 - Del Aguila, Pittau massless, based on spinor helicity
 - Van Hameren, Vollinga, Weinzierl massless, spinor helicity
 - Binoth, Guillet, GH, Pilon, Schubert massless and massive

Methods

unitarity-based methods (sewing together tree amplitudes)

new insights from twistor space

Bern, Del Duca, Dixon, Kosower,Badger, Glover, Khoze, Svrcek,Britto, Buchbinder, Cachazo, Feng,Bedford, Brandhuber, Spence, Travglini, Witten, ...

valid for an arbitrary number of external legs

- valid for an arbitrary number of external legs
- valid for massless and massive particles

- valid for an arbitrary number of external legs
- valid for massless and massive particles
- easy to automate

- valid for an arbitrary number of external legs
- valid for massless and massive particles
- easy to automate
- numerically robust and and fast

- valid for an arbitrary number of external legs
- valid for massless and massive particles
- easy to automate
- numerically robust and and fast
 - compact expressions before numerical evaluation preferred

- valid for an arbitrary number of external legs
- valid for massless and massive particles
- easy to automate
- numerically robust and and fast
 - compact expressions before numerical evaluation preferred
 - If algebraic tensor reduction is performed: inverse Gram determinants should be avoided

valid for an arbitrary number of external legs

- valid for an arbitrary number of external legs
- valid for massless and massive particles (uses dimensional regularisation for IR poles)

- valid for an arbitrary number of external legs
- valid for massless and massive particles (uses dimensional regularisation for IR poles)
- algebraic tensor reduction stops before purely scalar integrals are reached
 - \rightarrow convenient set of basis integrals, same for every process
 - \rightarrow easy to automate

inverse Gram determinants can be completely avoided

- inverse Gram determinants can be completely avoided
- no higher than $(n = 4 2\epsilon)$ dimensional integrals for N > 4 external legs (general proof)

- inverse Gram determinants can be completely avoided
- no higher than $(n = 4 2\epsilon)$ dimensional integrals for N > 4 external legs (general proof)
- IR divergences only in 2- and 3-point functions \rightarrow easy to isolate

- inverse Gram determinants can be completely avoided
- no higher than $(n = 4 2\epsilon)$ dimensional integrals for N > 4 external legs (general proof)
- IR divergences only in 2- and 3-point functions \rightarrow easy to isolate
- efficient numerical evaluation of parameter integrals by contour deformation \rightarrow robust

- inverse Gram determinants can be completely avoided
- no higher than $(n = 4 2\epsilon)$ dimensional integrals for N > 4 external legs (general proof)
- IR divergences only in 2- and 3-point functions \rightarrow easy to isolate
- efficient numerical evaluation of parameter integrals by contour deformation \rightarrow robust
- further algebraic reduction possible, to be used in "safe" phase space regions \rightarrow fast

feasible (?) until LHC starts (SM):

list to be discussed/modified/completed!

•
$$2 \rightarrow 3$$

• $pp \rightarrow VVjet$
• $pp \rightarrow VVV$
• $2 \rightarrow 4$
• $pp \rightarrow 4jets$
• $pp \rightarrow t\bar{t}b\bar{b}, pp \rightarrow t\bar{t} + 2jets,$
• $pp \rightarrow t\bar{t}H + jet$
• $pp \rightarrow V + 3jets$
• $pp \rightarrow VV + 2jets$
• $pp \rightarrow VVV + jet$

calculations/collaborations to be started at Les Houches

Summary and Outlook

- Rapid development of various theoretical tools recently
- Results for $2 \rightarrow 4$ processes at NLO feasible until LHC starts taking data
- Still lengthy individual calculations, no largely automated multi-purpose program available yet
- Focus on crucial processes
- Work on automatisation