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Motivation

LHC: Multi-particle final states of major importance

number of jets 3 4 5 6 7
σ/nb 91.4 6.54 0.46 0.032 0.002

(pjet

T
> 60 GeV, θij > 300, |ηj | < 3) [Draggiotis, Kleiss, C. Papadopoulos 02]

Poor description by present event generators

leading order:
large scale dependence
poor jet modelling
large sensitivity to cuts

need for NLO predictions
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NLO: Ingredients

e.g. 2 → N process

Diagram Generation

Real Radiation 2 → N + 1

One-loop Amplitude (N + 2)-point integrals

ideally: combine with Parton Shower
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Loop Diagram Generators

FeynArts/LoopTools

GRACE 1-loop

QGRAF

Real Radiation
Phase space slicing

Subtraction
mature state
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One-loop amplitudes

hard scattering

2 → 2 : "state of the art"
2 → 3 : only few results

2 → 4 : frontier
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Status NLO 2 → 3 (LHC)

pp → 3 jets
pp → V jj (V = γ, Z,W±)
pp → γγj
pp → V bb̄
pp → tt̄H, bb̄H
pp → tt̄ j

Campbell, De Florian, Del Duca, R.K. Ellis, Giele, Glover, Kilgore, Kunszt, Maltoni, Miller,

Nagy, Trocsanyi, Beenakker, Dittmaier, Plümper, Spira, Zerwas, Dawson, Orr, Reina,

Wackeroth, Brandenburg, Uwer, Weinzierl, . . .
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Status NLO 2 → 3 (ILC)

e+e− → 4jets
e+e− → νν̄H
e+e− → e+e−H
e+e− → νν̄γ
e+e− → tt̄H
e+e− → ZHH
γγ → tt̄H

Bern, Dixon, Kosower, Weinzierl, Kunszt, Frixione, Signer, Trocsanyi, Campbell, Cullen,

Glover, Miller, Bélanger, Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu, Ya-

sui, Jegerlehner, Tarasov, Denner, Dittmaier, Roth, Weber, Ren-You, Wen-Gan, Hui, Yan-Bin,

Hong-Sheng, Pei-Yun,. . .
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Status NLO 2 → 4

e+e− → 4 fermions :
Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu 07/04: progress report

Denner, Dittmaier, Roth, Wieders 02/05: complete electroweak O(α) corrections

some unphysical results
6-gluon amplitudes for Super–Yang–Mills N = 4

Bern, Dixon, Dunbar,Kosower 94

All non-MHV 7-gluon amplitudes for Super–Yang–Mills N = 4

Bern, Del Duca, Dixon, Kosower 04

6-scalar amplitudes in the Yukawa model

T. Binoth, J.Ph. Guillet, GH, C. Schubert 01

2-photon 4-scalar amplitudes in the Yukawa model

T. Binoth 02
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public programs: (hadron collider)

pp → 1, 2 jets Ellis, Kunszt, Soper ; Frixione

JETRAD, DYRAD pp → 1, 2 jets , pp → V + jet
Giele, Glover, Kosower

AYLEN/EMILIA pp → V V ′, pp → V γ
De Florian, Dixon, Kunszt, Signer

HVQMNR heavy quark production

Mangano, Nason, Ridolfi, Frixione

DIPHOX, JETPHOX pp → γγ, pp → γ jet
Aurenche, Binoth, Fontannaz, Guillet, Pilon, Werlen

pp → γ jet Gordon, Vogelsang ; Frixione
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[public] programs: (hadron collider)

pp → 3 jets Giele, Kilgore

NLOJET++ pp →≤ 3 jets Z. Nagy

MCFM pp → V + ≤ 2 jets (V = W,Z), pp → V + bb̄
J. Campbell, R.K. Ellis, D. Rainwater

GRACE/1-LOOP
Bélanger, Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Shimizu

pp → tt̄H, bb̄H
Beenakker, Dittmaier, Plümper, Spira, Zerwas

Dawson, Orr, Reina, Wackeroth
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Combination with parton shower

Collins, Zu 00

Frixione, Nason, Webber (MC@NLO) 02

Kurihara, Fujimoto, Ishikawa, Kato, Kawabata, Munehisa,
Tanaka 02
Krämer, Soper 03

Nagy, Soper 05
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J. Campbell
Collider Physics Workshop 04
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Calculation of one-loop amplitudes: methods

fully numerical: sum over all cuts of the graphs before
numerical integration over the loop momenta
D.Soper

algebraic/semi-numerical: separation into real and
virtual contributions → infrared poles → subtraction

Ferroglia, Passera, Passarino, Uccirati
Kurihara, Kaneko
Nagy, Soper
Binoth, GH, Kauer
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Methods

algebraic reduction:
Bern, Dixon, Kosower massless

Fleischer, Jegerlehner, Tarasov massive

Denner, Dittmaier massive and massless

Duplancic, Nizic massless

Giele, Glover, Zanderighi massless

Del Aguila, Pittau massless, based on spinor helicity

Van Hameren, Vollinga, Weinzierl massless, spinor helicity

Binoth, Guillet, GH, Pilon, Schubert massless and massive
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Methods

unitarity-based methods
(sewing together tree amplitudes)

new insights from twistor space
Bern, Del Duca, Dixon, Kosower,
Badger, Glover, Khoze, Svrcek,
Britto, Buchbinder, Cachazo, Feng,

Bedford, Brandhuber, Spence, Travglini, Witten, . . .
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Needed: methods which are
valid for an arbitrary number of external legs

valid for massless and massive particles

easy to automate

numerically robust and and fast
compact expressions before numerical evaluation preferred

if algebraic tensor reduction is performed:

inverse Gram determinants should be avoided

One-loop corrections to many-particle production – p.17



Needed: methods which are
valid for an arbitrary number of external legs

valid for massless and massive particles

easy to automate

numerically robust and and fast
compact expressions before numerical evaluation preferred

if algebraic tensor reduction is performed:

inverse Gram determinants should be avoided

One-loop corrections to many-particle production – p.17



Needed: methods which are
valid for an arbitrary number of external legs

valid for massless and massive particles

easy to automate

numerically robust and and fast
compact expressions before numerical evaluation preferred

if algebraic tensor reduction is performed:

inverse Gram determinants should be avoided

One-loop corrections to many-particle production – p.17



Needed: methods which are
valid for an arbitrary number of external legs

valid for massless and massive particles

easy to automate

numerically robust and and fast

compact expressions before numerical evaluation preferred

if algebraic tensor reduction is performed:

inverse Gram determinants should be avoided

One-loop corrections to many-particle production – p.17



Needed: methods which are
valid for an arbitrary number of external legs

valid for massless and massive particles

easy to automate

numerically robust and and fast
compact expressions before numerical evaluation preferred

if algebraic tensor reduction is performed:

inverse Gram determinants should be avoided

One-loop corrections to many-particle production – p.17



Needed: methods which are
valid for an arbitrary number of external legs

valid for massless and massive particles

easy to automate

numerically robust and and fast
compact expressions before numerical evaluation preferred

if algebraic tensor reduction is performed:

inverse Gram determinants should be avoided

One-loop corrections to many-particle production – p.17



hep-ph/0504267 [Binoth, Guillet, GH, Pilon, Schubert]

valid for an arbitrary number of external legs

valid for massless and massive particles
(uses dimensional regularisation for IR poles)

algebraic tensor reduction stops before purely scalar
integrals are reached
→ convenient set of basis integrals, same for every

process
→ easy to automate
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basis integrals:
In

2 (. . . j2), In

3 (. . . j3), In+2
3

(1, j1) In+2
4

(. . . j3), In+4
4

(1, j1)

inverse Gram determinants can be completely avoided

no higher than (n = 4 − 2ε) - dimensional integrals for
N > 4 external legs (general proof)

IR divergences only in 2- and 3-point functions
→ easy to isolate

efficient numerical evaluation of parameter integrals by
contour deformation → robust
further algebraic reduction possible, to be used in "safe"
phase space regions → fast
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feasible (?) until LHC starts (SM):

list to be discussed/modified/completed !

2 → 3
pp → V V jet

pp → V V V

2 → 4
pp → 4 jets

pp → tt̄ bb̄, pp → tt̄ + 2 jets,
pp → tt̄ H + jet

pp → V + 3 jets

pp → V V + 2 jets

pp → V V V + jet

calculations/collaborations to be started at Les Houches
One-loop corrections to many-particle production – p.20



Summary and Outlook

Rapid development of various theoretical tools recently

Results for 2 → 4 processes at NLO feasible until LHC
starts taking data

Still lengthy individual calculations, no largely
automated multi-purpose program available yet

Focus on crucial processes

Work on automatisation
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