Progress toward pp → tt + Jet in next-to-leading order QCD

Peter Uwer PH-TH

Work done in collaboration with A. Brandenburg, S. Dittmaier, and S. Weinzierl

Contents:

- Why is top quark physics interesting / important ?
- Where do we stand ?
- Status of tt + 1 jet @ NLO
- Conclusion

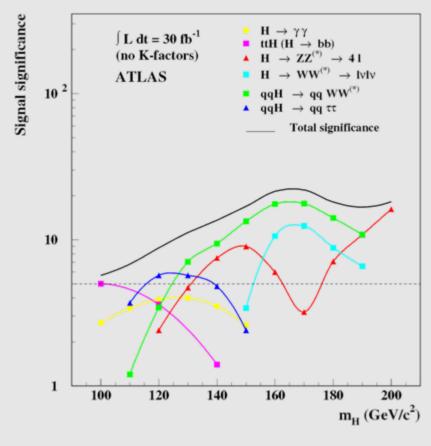
Why is top quark physics important?

Interesting in itself

- Precise study of top properties, search for new physics,...
- Suitable reaction for "commissioning"
 - b-tagging efficiency,...
- Important background for Higgs searches
 - Higgs production via WBF,...

→ Precise theoretical understanding is necessary!

Why is top quark physics important?



The WBF process $qq \rightarrow WWqq \rightarrow qqH$ is important over a wide Higgs mass range

Important backgrounds:

channel	$e^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$ w/minijet veto	$e^\pm e^\mp, \mu^\pm \mu^\mp$	$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}$ w/minijet veto
$70 < m_h < 300 \text{ GeV}$	1.90	1.69	1.56	1.39
SM, $m_h = 155 \text{ GeV}$	5.60	4.98	4.45	3.96
tī	0.086	0.025	0.086	0.025
tīj	7.59	2.20	6.45	1.87
tījj	0.83	0.24	0.72	0.21
single-top (tbj)	0.020	0.015	0.016	0.012
bībjj	0.010	0.003	0.003	0.001
QCD WW jj	0.448	0.130	0.390	0.113
EW WW j j	0.269	0.202	0.239	0.179
QCD TTjj	0.128	0.037	0.114	0.033
EW ττ <i>jj</i>	0.017	0.013	0.016	0.012
QCD (lij	-	-	0.114	0.033
EW ℓℓjj	-	-	0.011	0.008
total bkg	9.40	2.87	8.04	2.49
S/B	1/5.0	1/1.7	1/5.1	1/1.8
$\mathcal{L}_{5\sigma}^{obs}[fb^{-1}]$	65	25	82	32
[Alves, Eboli, Plehn, Rainwater '04]				

\rightarrow Precise predictions for pp \rightarrow tt + jet are necessary

Where do we stand?

Important progress over the last years as far as tt production is concerned

- NLO corrections including spin-correlations are known
- Resummation of large log's
- Combination of NLO fixed order with parton shower MC [MC@NLO, Frixione, Webber]

As far as tt is concerned theory is in good shape, given today's technology even 2-loop might be possible

Beyond top quark pair production, i.e. tt+ n Jets, tt + γ ,... most of the cross sections are only known at LO

> → Easy to use and well tested programs like Alpgen or Madgraph available

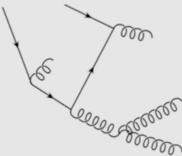
The NLO corrections are only known for a few processes

→ State of the art: 5-point one-loop amplitudes with massive particles

Although conceptionally solved one-loop calculations for more than 4 legs are still non-trivial

Status of pp \rightarrow tt + 1 Jet @ NLO

Real corrections: Amplitudes



- Calculation of matrix elements straight forward
 - Two methods used:
 - 1. Feynman diagram approach + four dimensional helicity scheme (FDH)
 - 2. Recurrence relations à la Berends, Giele

As a check:

QGRAF Diagram 20

comparison with Madgraph

Phase space integration yields IR/coll. singularities

To extract soft and mass singularities we use the dipole subtraction method!

[Catani, Seymour '96, Nason, Oleari '98 Phaf, Weinzierl '01, Catani, Dittmaier, Seymour, Tocsanyi '02]

Alternatives: Phase space slicing [Giele, Glover '92, Giele, Glover, Kosower '93]

Real corrections: Subtraction Method

Basic idea:

Add and subtract a contribution which:

- matches pointwise the singularities
- is easy enough to be integrated analytically over the one-particle unresolved phase space

$$\sigma_{\text{NLO}} = \underbrace{\int_{m+1} [\sigma_{\text{real}} - \sigma_{\text{sub}}]}_{\text{finite}} + \underbrace{\int_{m} \left[\sigma_{\text{virt.}} + \overline{\sigma}_{\text{sub}}^{1}\right]}_{\text{finite}} + \underbrace{\int dx \int_{m} \left[\sigma_{\text{fact.}}(x) + \overline{\sigma}_{\text{sub}}(x)\right]}_{\text{finite}}$$

Requirements:

$$0 = -\int_{m+1}\sigma_{sub} + \int_m \bar{\sigma}_{sub}^1 + \int dx \int_m \bar{\sigma}_{sub}(x)$$

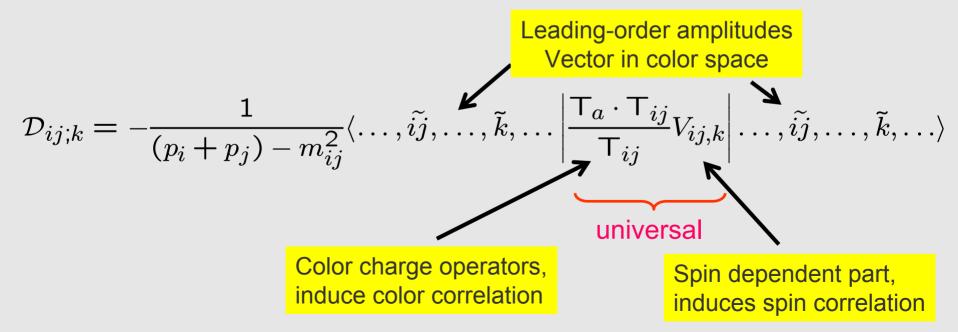
 $\sigma_{\rm sub} \approx \sigma_{\rm real}$ in all single-unresolved regions

Real corrections: Subtraction terms

Due to universal structure:

$$\sigma_{\text{sub}} = \sum_{\text{dipoles}} \mathcal{D}_{ij,k}(p_i, p_j, p_k)$$

Generic form of individual dipole:



Real corrections: Status

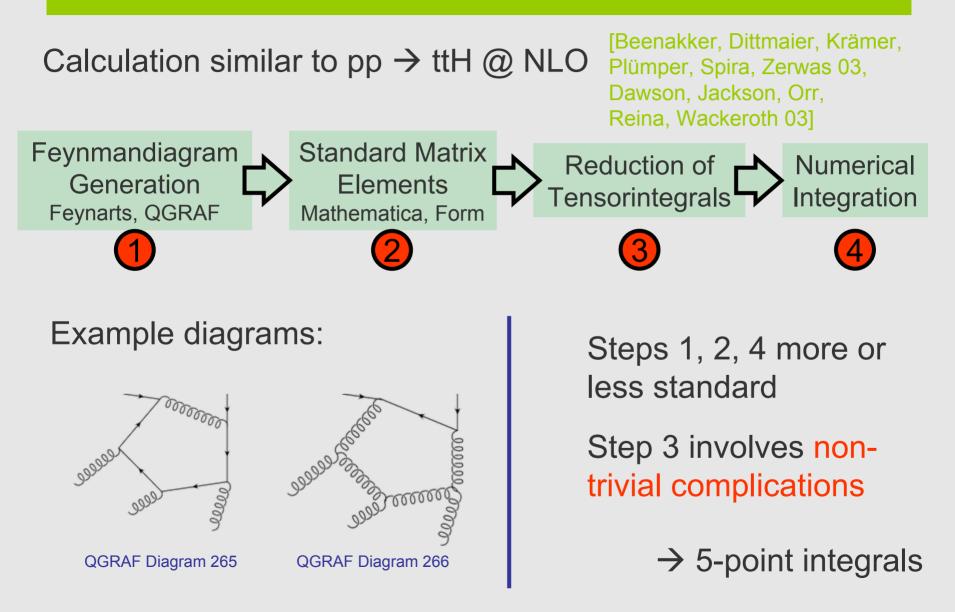
For gg \rightarrow ttg the real corrections are finished

- Matrix element checked point wise
- Subtraction term checked in singular regions
- Two different programs for the phase space integration
- Integration is stable

Note:

Remaining processes ($qq \rightarrow ttg, qg \rightarrow ttq,...$) are much easier, many things can be reused...

Virtual corrections



How do we obtain a fast and numerical stable reduction of the tensor integrals?

Four and lower-point tensor integrals:

Reduction à la Passarino-Veltman, with special reduction formulae in singular regions

Five-point tensor integrals: [Beenakker et al '03]

- 1. Form *regularization scheme independent* quantities by dressing propagators with a small mass
- 2. Split into finite and divergent pieces
- 3. Apply 4-dimensional reduction scheme, 5-point tensor integrals are reduced to 4-point tensor integrals

→ No dangerous Gram determinants!

In 4 dim. 5-point integrals can be reduced to 4-point integrals [Melrose 65]

Reduction of finite 5-point integrals

[Melrose '65, van Neerven, Vermaseren '84]

Consider:

$$E^{4} = \frac{1}{i\pi^{2}} \int d^{4}\ell \prod_{j=0}^{4} \frac{1}{(\ell + p_{j})^{2} - m_{j}^{2} + i\varepsilon} = \frac{1}{i\pi^{2}} \int \frac{d^{4}\ell}{N_{0}N_{1}N_{2}N_{3}N_{4}}$$

$$In 4 \text{ dimensions the loop-momentum can be expressed in } p_{I}-p_{4}$$
:
$$p_{0} = 0$$

$$0 = \det \begin{pmatrix} 2\ell^{2} & 2\ell \cdot p_{1} & \dots & 2\ell \cdot p_{4} \\ 2p_{1} \cdot \ell & 2p_{1} \cdot p_{1} & \dots & 2p_{1} \cdot p_{4} \\ \vdots & \vdots & \ddots & \vdots \\ 2p_{4} \cdot \ell & 2p_{4} \cdot p_{1} & \dots & 2p_{4} \cdot p_{4} \end{pmatrix}$$
Plug in the determinant into the integral, we obtain ...

Virtual corrections: Evaluation of 5-point integrals

$$0 = \frac{1}{i\pi} \int d^4\ell \frac{1}{N_0 \dots N_4} \det(\dots)$$

Rewriting the scalar products in terms of propagators, i.e.:

$$2p_1 \cdot \ell = \ell^2 + 2p_1\ell - m_1^2 - \ell^2 + m_0^2 - m_0^2 + m_1^2$$

= $N_1 - N_0 + m_0^2 - m_1^2$

We obtain reduction of 5-point integral in terms of lower-point integrals

Method only applicable to finite integrals...

Reduction of singular 5-point integrals

Dress all the mass less propagators with small mass λ :

$$E^d o E^{\lambda,d}$$
 [Dittmaier '03]

Consider:

$$E^{\lambda,d} = E_{\text{sing.}}^{\lambda,d} + \underbrace{(E^{\lambda,d} - E_{\text{sing.}}^{\lambda,d})}_{\text{regularization scheme indep.}}$$

For $\lambda \rightarrow 0$, $E_{\text{sing.}}^{\lambda,d}$ reproduces the singular behaviour of E^d $E_{\text{sing.}}^{\lambda,d}$ obtained from soft and collinear limits of $E^{\lambda,d}$

 \rightarrow simple combination of 3-point integrals

$$E^{d} = E_{\text{sing.}}^{\lambda=0,d} + (E^{\lambda,d=4} - E_{\text{sing.}}^{\lambda,d=4})$$

can now be reduced to lower-point integrals

Virtual corrections: Evaluation of 5-point Tensorintegrals

Direct reduction, same trick as in the scalar case:

[Denner, Dittmaier '03]

To regularize spurious UV singularities in individual terms

$$0 = \frac{1}{i\pi^2} \int d^4\ell \frac{\ell_{\mu_1} \cdots \ell_{\mu_P}}{N_0 N_1 \cdots N_4} \frac{-\Lambda^2}{\ell^2 - \Lambda^2} \det \begin{pmatrix} 2\ell^2 & 2\ell \cdot p_1 & \cdots & 2\ell \cdot 4\\ 2p_1 \cdot \ell & 2p_1 \cdot p_1 & \cdots & 2p_1 \cdot p_4\\ \vdots & \vdots & \ddots & \vdots\\ 2p_4 \cdot \ell & 2p_4 \cdot p_1 & \cdots & 2p_4 \cdot p_4 \end{pmatrix}$$

with $N_i = (\ell + p_i)^2 - m_i^2 + i\epsilon$, $p_0 = 0$
Can be expressed in terms of N_i

Reduction of $E_{\mu_1\mu_2\dots}$ in terms of $D_{\mu_1\mu_2\dots}$

No dangerous Gram-Determinants appear in the denominator!

Virtual corrections: Evaluation of 5-point Tensorintegrals

General result:

$$E_{\mu_{1}\mu_{2}...\mu_{p}} = -\sum_{i=0}^{4} \frac{\det(Y_{i})}{\det(Y)} D_{\mu_{1}\mu_{2}...\mu_{p}}^{(fin)}(i) + \sum_{i,j=1}^{4} (-1)^{i+j} \frac{\det(\hat{Z}_{ij}^{(4)})}{\det(Y)} 2p_{j}^{\alpha} D_{\mu_{1}\mu_{2}...\mu_{p}}(i) + \frac{1}{\det(Y)} U_{\mu_{1}\mu_{2}...\mu_{p}}$$
With:

$$Y_{ij} = m_{i}^{2} + m_{j}^{2} - (p_{i} - p_{j})^{2}$$

$$\widehat{Z}_{ij}^{(4)} \text{ from } Z^{(4)} = \begin{pmatrix} 2p_{1} \cdot p_{1} & \dots & 2p_{1} \cdot p_{4} \\ \vdots & \ddots & \vdots \\ 2p_{4} \cdot p_{1} & \dots & 2p_{4} \cdot p_{4} \end{pmatrix}$$
By discarding the *i*th row and *j*th column

$$D_{\mu_{1}\mu_{2}...\mu_{p}}^{(fin)}(i), \mathcal{D}_{\mu_{1}\mu_{2}...\mu_{p}}(i)$$
Tensor integrals with the *i*th denominator removed

$$U_{\mu_1\mu_2\dots\mu_p} = \begin{cases} 0 & \text{for } p <= 3, \\ -\frac{1}{48}(g_{\mu_1\mu_2}g_{\mu_1\mu_2} + g_{\mu_1\mu_3}g_{\mu_4\mu_2} + g_{\mu_1\mu_4}g_{\mu_2\mu_3}) & \text{for } p = 4 \end{cases}$$

Checks and status

General philosophie:

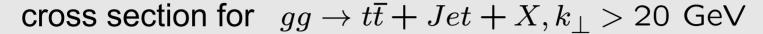
Every contribution should be checked independently, If possible using different methods and different tools

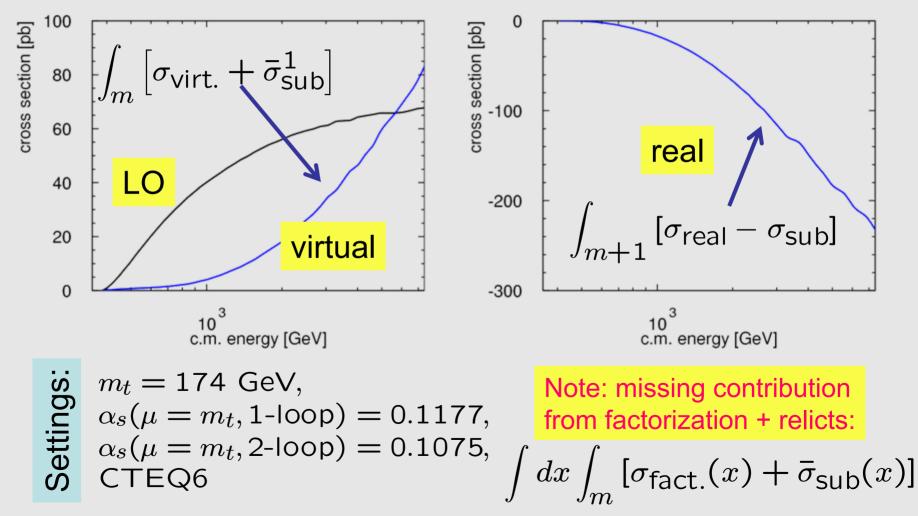
Current status:

- ✓ All tree amplitudes are checked
- ✓ Cancellation of UV and mass/soft singularities works
- ✓ Virtual corrections are stable
- ✓ Dipols are checked at individual phase space points + in singular regions → numerically stable
- \checkmark Integration of real corrections works and is checked
- Not every thing is cross checked so far

Still missing: full cross check of virtual corrections, so far only some pieces have been checked

First Results





But we are ahead of time: "This calculation will never be done in my lifetime", D. Rainwater

tt+Jet Production: Conclusions

The NLO corrections to pp \rightarrow tt + jets are important :

 To improve the precision of the background for Higgs searches/measurements in WBF with H→WW
 For precision measurements in the Topquark sector, i.e. anomalous gtt-couplings, charge measurements (ttγ)

Calculation of $gg \rightarrow ttg @ NLO almost complete$

5-point techniques work, direct reduction of tensor integrals numerically stable, real corrections tested, integration is stable,...

To do: ● Finish missing cross checks ● Remaining processes qq→ttg, qg → ttq

Top quark physics at the LHC

Important observables:

tt cross section

Precise determination of top mass, consistency checks with theo. predictions, search for new physics in the tt invariant mass spectrum

- W-Polarization in top decay Test of the V-A structure in top decay
- ttH cross section
 Measurement of the Yukawa coupling
 - Single top production
 - Spin correlations

Direct measurement of the CKM matrix element Vtb, top polarization, search for

anomalous Wtb couplings Weak decay of a `free' quark, bound on

the top width and V_{tb} , search for anomalous couplings

ttγ cross section Measurement of the electric charge

tt+Jet(s) production Search for anomala

Search for anomalous couplings, important background

• ?

preparation

As far as top is concerned theory is not in a bad shape!

Conclusion

- NLO calculations for 5-point amplitudes including masses are still non-trivial
- Further progress on the theory side useful
- NLO calculations are time consuming
 - → Experimentalists and theorists should think about what we really need
- Not everything needs to be done in NLO !

