Search for anomalous coupling in top decay at hadron colliders

S.Tsuno, R.Tanaka, I.Nakano (Okayama U.) and Y.Sumino (Tohoku U.)

Introduction

At Tevatron,

The top property measurements are the next round studies.

At LHC,

The top is the "controlled sample" (may often be a backgrounds).

Understanding of top properties require Full kinematical reconstruction:

- (Physics) \implies Good tests of the anomaly beyond SM.
- (Experiment) Likelihood Fitting in event-by-event basis; May useful to compensate the jet energy calibration (etc) each other.

In this WS, would be discussed about understanding of top physics in experiment and theoretical views.

W polarization and top spin in top correlation

CDF RunII Preliminary:

W helicity measurement from top decay :

a) $\cos\theta$: $F_0 = 0.89^{+0.30}_{-0.34}(stat.) \pm 0.17(syst.)$ (@162 pb⁻¹)

b) lepton p_T : $F_0 = 0.27^{+0.35}_{-0.21}(stat.) \pm 0.17(syst.)$ (@193 pb⁻¹)

spin correlation : not yet for public.

Search for anomalous coupling in top decay Eur.Phys.J.,C29(2003)1

With the on-shell W mass and bottom massless limit, the coupling for top-decay depends only on 2(+2) form factors.

$$\begin{cases} \Gamma_{Wtb}^{\mu} = -\frac{g_W}{\sqrt{2}} V_{tb} \,\overline{u}(p_b) \left[\gamma^{\mu} f_1^L P_L - \frac{i\sigma^{\mu\nu} p_{W\nu}}{M_W} f_2^R P_R \right] u(p_t) & \text{for top } t \\ \overline{\Gamma}_{W\overline{tb}}^{\mu} = -\frac{g_W}{\sqrt{2}} V_{tb}^* \,\overline{v}(p_{\overline{t}}) \left[\gamma^{\mu} \overline{f_1^L} P_L - \frac{i\sigma^{\mu\nu} p_{W\nu}}{M_W} \overline{f_2^L} P_L \right] v(p_{\overline{b}}) & \text{for anti-top } W \\ Where P_L = (1 - \gamma_5) / 2 \text{ and } P_R = (1 + \gamma_5) / 2. \end{cases}$$

- h

If $f_1^L = \bar{f}_1^L$ and $f_2^R = \bar{f}_2^L$, CP conservation, otherwise, CP violation.

The parameters are characterize by just two parameters.

This formula was embedded into GRACE system for hadron collider (GR@PPA).

Kinematical shape

The anomalous coupling is insensitive to the ordinal top kinematics analysis from W helicity measurements.

We need the advanced kinematical distribution which enhances those anomalous couplings.

Advance kinematical distribution (I)

Differential decay distribution from polarized top-quark for $f_{1L}=1$ (tree level),

Advanced kinematical distribution (II)

The idea is to make 2D plot to enhance the W_T distribution.

 $\begin{array}{l} X:\cos\theta_{(top,lep)}{}^{W}: \text{angle between top and lepton on W rest frame.} \\ Y:\cos\theta_{(spin,W)}{}^{top}: \text{angle between top spin and W on top rest frame.} \end{array}$

Clearly, we can see the excess in (-1,-1) region.

The reconstruction of top spin axis is the KEY in this analysis.

Advanced kinematical distribution (III)

We take "Helicity basis" for the top spin axis.

top spin axis
$$\implies -\vec{p}(\bar{t})$$

Actually, hadronic-top on the leptonic-top CM frame.

 $X : \cos \theta_{(top,lep)}^{W}$: angle between top and lepton on W rest frame. $Y : \cos \theta_{(anti-top,W)}^{top}$: angle between anti-top and W on top rest frame.

Sensitivity for the anomalous coupling

As the first guess, we define the sensitivity factor,

 N_A : number of events in (-1,-1) region N_B : number of events in (+1,+1) region

Different spin basis are also shown, although they are not reconstructable in this analysis.

The ratio R is approximately proportional to the f2/f1 against various choices of f1 and f2. This slope is the discrimination power to the coupling parameters.

Jet Response Function

Measure the difference between input parton and observed jet.

First approximation : Gaussian distribution neglecting the tail effect. Also, neglecting geometrical dependence.

B-Jet response function is measured separately.

Mass Distributions

Kinematical reconstruction

Signal sensitivity (I)

The number of events in (-1,-1) region are increasing with the coupling parameters.

Sensitivity of Anomalous Coupling

Reduction of the fake rate should improve the discovery/exclude reach.

Summary

Anomalous coupling in top decay was studied :

- 1) Embedded this coupling into Monte Carlo event generator,
- 2) Found a kinematical distribution enhanced by the anomalous coupling,
- 3) Signal shape and sensitivity was studied.

We found :

1) Sensitivity $\mathbf{R} \equiv \mathbf{N}_{A}/\mathbf{N}_{B}$ can be reproduced almost linear relation to the anomalous coupling parameters f_{1} and f_{2} in reconstructed signal and parton level. The discrimination power is now 1.2.

Perspective :

- 1) We may have more room to test the top property using the kinematical info.
- 2) Naïve guess: $2 \sim 3$ times better than $\cos\theta$ measurement at LHC.

Note :

In LHC, need to study spin reconstruction. (tt, tt+jets)

MCatNLO v.s. ME gen.(7-bdy; LO)

Advanced kinematical distribution (III')

We have to rely on the effective spin axis because the top quark

- 1 has large mass (173GeV),
- 1 is pair-produced with high momentum ($p_T \sim 100 \text{GeV}$).

Effective spin basis: (defined on top CM frame)

where $\vec{s}_t \cdot \vec{s}_{\bar{t}} = -1$ (top spin correlation).

Note that only "Helicity basis" is reconstructable in this analysis.

Advanced kinematical distribution (IV')

