
Workshop: Physics at TeV Colliders
Les Houches
17 May 2005

The Les Houches Accord
Should/Could We Update It?

• Translate from Fortran to C++?

• Provide further information?

• Standardize file formats?

Torbjörn Sjöstrand

CERN/PH and

Department of Theoretical Physics, Lund University

The Context

Specialized Generator

=⇒ Hard Process

Les Houches Interface

HERWIG or PYTHIA

(Resonance Decays)

Parton Showers
Underlying Event

Hadronization
Ordinary Decays

Some Specialized Generators:
• AcerMC: ttbb, . . .
• ALPGEN: W/Z+ ≤ 6j,

nW + mZ + kH+ ≤ 3j, . . .
• AMEGIC++: generic LO
• CompHEP: generic LO
• GRACE+Bases/Spring:

generic LO+ some NLO loops
• GR@PPA: bbbb
• MadCUP: W/Z+ ≤ 3j, ttbb

• MadGraph+HELAS: generic LO
• MCFM: NLO W/Z+ ≤ 2j,

WZ, WH, H+ ≤ 1j

• O’Mega+WHIZARD: generic LO
• VECBOS: W/Z+ ≤ 4j

Apologies for all unlisted programs

The Les Houches Accord

Les Houches accord May 2001 ⇒ E Boos et al., hep-ph/0109068

The LHA introduces two steps in a run, where a user can intervene:

1) at initialization, the generator does a
CALL UPINIT

where the user will define the character of a run by setting info in
COMMON/HEPRUP/

2) for each new event, the generator does a
CALL UPEVNT

where the user will define the next event by setting info in
COMMON/HEPEUP/

Initialization
INTEGER MAXPUP
PARAMETER (MAXPUP=100)
INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP
DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP
COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),IDWTUP,
&NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),LPRUP(MAXPUP)

IDBMUP: incoming beam particles (PDG codes, p = 2212, p = −2212)
EBMUP: incoming beam energies (GeV)
PDFGUP, PDFSUP: PDFLIB parton distributions (not used by PYTHIA)

IDWTUP: weighting strategy
= 1: PYTHIA mixes and unweights events, according to known dσmax

= 2: PYTHIA mixes and unweights events, according to known σtot

= 3: unit-weight events, given by user, always to be kept
= 4: weighted events, given by user, always to be kept
= -1, -2, -3, -4: also allow negative dσ

NPRUP: number of separate user processes
XSECUP(i): σtot for each user process
XERRUP(i): error on σtot for each user process
XMAXUP(i): dσmax for each user process
LPRUP(i): integer identifier for each user process

The event
INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,
&IDUP(MAXNUP),ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),
&PUP(5,MAXNUP),VTIMUP(MAXNUP),SPINUP(MAXNUP)

IDPRUP: identity of current process
XWGTUP: event weight (meaning depends on IDWTUP weighting strategy)

SCALUP: scale Q of parton distributions etc.
AQEDUP: αem used in event
AQCDUP: αs used in event

NUP: number of particles in event
IDUP(i): PDG identity code for particle i

ISTUP(i): status code (−1 = incoming parton, 1 = final-state parton,
2 = intermediate resonance with preserved m)

MOTHUP(j,i): position of one or two mothers
PUP(j,i): (px, py, pz, E, m)

VTIMUP(i): invariant lifetime cτ

SPINUP(i): spin (helicity) information

Examples of colour flows and indices

ICOLUP(j,i): colour and anticolour indices
= colour line tags, in the NC → ∞ limit, starting e.g. with number 501.

Example 1: hadronic tt production Example 2: baryon number violation

1

2
4

t 7
b

8W

3t

5
b

6W

501

502
502

503

503

1

e

2

e
3

0Z

5
u~ 8

d

9
d

4
u~

6
d

7
d501

501

502

503

504

505

A C++ Implementation — Proposal For Discussion

Introduce two base classes:

• LHAinit : initialization info, ∼ COMMON/HEPRUP/

pure virtual method set, ∼ UPINIT

• LHAevnt : event info, ∼ COMMON/HEPEUP/

pure virtual method set, ∼ UPEVNT

The base classes provide
• methods for extracting all the Les Houches information,
• overloaded << for printing information, and
• the tools for storing information

Derived classes do the actual storing, with set, separately for
• external C++ process libraries
• reading from event file (MadGraph, AlpGen, . . .)
• interface to Fortran 77 commonblocks

LHAinit

Public methods:
idBeamA(), idBeamB(): incoming beam particles
eBeamA(), eBeamB(): incoming beam energies (GeV)
pdfGroupBeamA(), pdfGroupBeamB(),

pdfSetBeamA(), pdfSetBeamB(): PDF’s

strategy(): weighting strategy

size(): number of processes, index i in range 0 ≤ i < size

idProcess(i): integer identifier for each process
xSec(i): σtot for each process
xErr(i): error on σtot for each process
xMax(i): dσmax for each process

Protected methods, to be used by set:
LHAinit, ∼LHAinit: constructor, destructor
beamA(id, e, pdfGroup, pdfSet), same for beamB: set beams
strategy(choice): set weighting strategy
process(id, xSec, xErr, xMax): append process to list

LHAevnt

Public methods:
idProc(): identity of current process
weight(): event weight
scale(): scale Q of parton distributions etc.
alphaQED(), alphaQCD(): αem, αs used in event
size(): number of particles +1, index i in range 1 ≤ i < size

(keep slot 0 empty, for consistency with Fortran, mothers/daughters)
id(i): PDG identity code for particle i

status(i): status code
mother1(), mother2(): position of one or two mothers
col1(), col2(): colour and anticolour indices
px(i), py(i), pz(i), e(i), m(i): (px, py, pz, E, m)

tau(i): invariant lifetime cτ
spin(i): spin (helicity) information

Protected methods, to be used by set:
LHAevnt, ∼LHAevnt: constructor, destructor
process(id, weight, scale, alphaQED, alphaQCD): info on process
particle(id, status, mother1, mother2, col1, col2,

px, py, pz, e, m, tau, spin): info on particle

Status

Up and running, used in PYTHIA 8
Roughly 500 lines, whereof ∼ half blank lines and comments.
Available on request (part of upcoming first PYTHIA 8 draft release).

Contains the two base classes, plus two derived class sets:

LHAinitFortran, LHAevntFortran: reads from Fortran commonblocks
used for runtime link to PYTHIA 6.3

LHAinitPythia6, LHAevntPythia6: reads from files
used for generation from stored PYTHIA 6.3 processes

LHAinitPythia6 lhaInit("sample.init");

LHAevntPythia6 lhaEvnt("sample.evnt");

pythia.init(&lhaInit, &lhaEvnt);

Still missing: derived classes for MadGraph, . . .

Outlook

The Les Houches Accord has been a big success,
influencing the way theorists structure event generators,
and the way experimentalists use them.

It could be even more useful if

• Further information were provided, e.g.

? Phase space cutoffs in ME generation
e.g. for CKKW–L–MLM matching of ME and PS

? production scale of individual partons
e.g. BFKL/CCFM gives ME+ISR, wants to add FSR & the rest
(H. Jung, CASCADE)

• Initialization/event files had a standard format
(S. Mrenna: MadGraph provides good example)

Should we start discussing an LHA++ ?

