Perturbative QCD
 and the Energy Dependence of total cross-sections

Rohini, Godbole
 CTS, IISc,
 Bangalore, India.

May 2005
Les Houches TeV Collider Workshop.

- What gives the energy dependence of total cross-sections?
\checkmark A look at $p p, p \bar{p}, \gamma p, \gamma \gamma \rightarrow$ hadrons
\checkmark The role played by e.m. form factors in descriptions of the total cross-section
\downarrow Towards a QCD Description of the decrease and the increase of total cross-sections through Soft Gluon Summation (Bloch-Nordsieck Model) and Mini-jets
Predictions for hadronic backgrounds at future linear colliders.

Les Houches TeV Col- and the Energy Dependence lider Workshop.
(page 1)

Rohini, Godbole CTS, IISc, Bangalore, India.

With G. Pancheri and A. Corsetti, Eikonal Minijet Model for $p p, \gamma p$ and $\gamma \gamma$. PLB 435 (1998) 441, Eur.Phys.J.C19:129-136,2001
With A. de Roeck, A. Grau and G. Pancheri, Testing of models at future Linear colliders JHEP 0306, 061 (2003) [arXiv:hep-ph/0305071]. 1/x in $\sigma_{j e t}$ drives the rise.
With A. Grau, G. Pancheri and Y. N. Srivastava Soft Gluon Resummation tames the rise. arXiv:hep-ph/0408355.
With A. Grau, G. Pancheri and Y. N. Srivastava Cross talk between HERA, LC and LHC arXiv:hep-ph/0412189.

May 2005
Les Houches TeV Col- and the Energy Dependence (page 2) lider Workshop.
of total cross-sections

Rohini, Godbole CTS, IISc, Bangalore, India.

Some associated work:
M. Drees and R.M. Godbole, Zeit. Phys. C59 (1993) 591. Hadronic backgrounds due to photon structure at Linear Colldiers
M. Block, E. Gregores, F. Halzen and G. Pancheri for the Aspen Model Phys.Rev.D60 (1999) 054024 FACTORIZATION
A. Grau, G. Pancheri and Y. N. Srivastava for the Bloch-Nordsieck Model PR D60 (1999) 114020 $\alpha_{s}\left(k_{t} \rightarrow 0\right)$ tames the rise
M. Block and K. Kang, hep-ph/0302146, Factorisation and Unitarity
of total cross-sections

- The energy dependence shown by the data on total cross-sections for proton and photon induced processes.
- Predictions for total cross-sections within unified models, embedding QCD processes, using information on proton and photon structure functions as well as those from the model independent extrapolations to higher energies.
- Taming of the high energy rise with the soft gluon resummation in the eikonalised minijet model (EMM).
\checkmark Connections between the energy dependence and the behavior of the strong coupling constant in the infrared regime.
- Possibilities for distinguishing between different models, all of which try to describe the energy dependence of the total cross-section, at the future $e^{+} e^{-} / \gamma \gamma$ colliders and implications of this energy dependence for cosmic ray energies.

May 2005
Les Houches TeV Collider Workshop.
of total cross-sections

Scale Factor: From VMD and Quark counting:

$$
\sigma_{\gamma p}=\frac{2}{3} \mathcal{P}_{V M D} \sigma_{p p} ; \sigma_{\gamma \gamma}=\frac{2}{3} \mathcal{P}_{V M D} \sigma_{\gamma p}
$$

where $\mathcal{P}_{V M D}=\Sigma \frac{4 \pi \alpha}{f_{V}^{2}} \simeq \frac{1}{250}$

- $\sigma_{t o t}$ for processes involving photons seem to rise faster with energy.

Words of caution:

> The knowledge of the $\gamma p / \gamma \gamma$ cross-sections obtained from $e p / e^{+} e^{-}$recations involving unfolding.

May 2005
Les Houches TeV Col- and the Energy Dependence lider Workshop.

Perturbative QCD
of total cross-sections
(page 5)

Rohini, Godbole CTS, IISc, Bangalore, India.

Using VMD with running $\alpha_{Q E D}$

M. Block (Talk at photon 2003) Good simultaneous fits to proton and photon induced cross-sections in a model with factorisation ONLY if $\gamma \gamma$ data are renormalised by 10%.
Look to the talk by A. de Roeck here.

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence
of total cross-sections
(page 6)
Rohini, Godbole CTS, IISc, Bangalore, India.

The task of describing the energy behaviour of total cross-sections can be broken down into three parts:
\checkmark the rise

- the initial decrease
- the normalization

The tools:

\checkmark Bounds from Analyticity and Unitarity.
\checkmark Regge Pomeron exchange.
\checkmark The Eikonal Approximation.
\checkmark The Eikonal Minijet Model: EMM.
\checkmark Bloch-Nordsieck Resummation for the EMM.
\checkmark Want an unified description for $p p, \bar{p} p, \gamma p$ and $\gamma \gamma$.

Factorisation based approach: e.g. Block et al
Use only Unitarity, analyticity, crossing symmetry. Treat γ like a proton. Fit functions for protons and make predictions for photons. But the problem of obtaining the functions for protons from first principle remains. The $\gamma \gamma$ data need to be renormalised by 10%.

QCD Based approach:

Use perturbative QCD as well as measured str. fns. of p and γ. I.e. in terms of quarks and gluons in p and γ.

May 2005
Les Houches TeV Collider Workshop.
(page 7)

Rohini, Godbole CTS, IISc, Bangalore, India.

Starting point: Optical Theorem

$$
\sigma_{t o t}=\frac{4 \pi}{k} \Im\left(f_{e l}(\theta=0)\right)
$$

All the measured cross-sections increase, starting around $10-20 \mathrm{GeV}$.

Is the increase Unbounded?
Answer known for a long time: NO!. Froissart Bound

$$
\sigma_{t o t}(s)<\text { constant } \times(\ln S)^{2}
$$

Based on:

- Optical Theorem
- Rather weak assumption on the scattering amplitude A(s, t) from a field theory with finite range interactions.

Unitarity and Analytcity \Rightarrow predictions from the Regge Pomeron approach.
Crossing gives $\mathrm{A}(\mathrm{s}, \mathrm{t}) \Rightarrow f(t) S^{R e \alpha(t)}$ as $s \rightarrow \infty$.
This mean that
$\sigma_{t o t} \sim s^{\alpha(0)-1}$.

- $\alpha_{\rho}(o) \simeq \frac{1}{2}$

Gives the decrease with energy initially.
Pomeron trajectory dominates asymptotically.

- $\alpha_{\boldsymbol{T}}(o) \simeq 1$.

Thus will give constant cross-section at High Energies.

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

Regge-Pomeron Exchange (Donnachie and

 Landshoff)$$
\sigma_{t o t}(s)=X s^{\epsilon}+Y s^{-\eta}
$$

$\eta=1-\alpha_{R}(0) \simeq 0.5$ and $\epsilon=\alpha_{\mathbb{I}}-1 \simeq$ small.
Factorisation tells:
for $a+b \rightarrow a+b ; X, Y$ are given by

$$
X=\beta_{P a a} \beta_{P b b}, Y=\beta_{R a a} \beta_{R b b}
$$

- Very successful and useful phenomenological parametrisation.

But

- Violates the Froissart Bound asymptotically.
- η and ϵ not Universal (Post 2000)
$\epsilon_{p p}=0.08$;
$\epsilon_{\gamma \gamma}=0.15-0.22$ (Talk by A. de Roeck)
- Where is QCD?

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole
CTS, IISc,
Bangalore, India.

Basic philosophy:
Try to explain the rise and the initial fall in terms of partons in the colliding hadrons using experimentally determined parton densities and basic QCD interactions among partons.

Increasing beam energy \Rightarrow increase in \# and energy of collding partons.
$\sigma_{j e t}=\sigma(A+B \rightarrow j e t+j e t+X)$
calculated in pQCD rises with increasing \sqrt{s}.
Energy rise in $\sigma_{t o t}$ driven by the rise of $\sigma_{j e t}$.
Minijet Model Halzen and Cline (1985)

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 10)

Rohini, Godbole CTS, IISc, Bangalore, India.

$$
\begin{gathered}
\sigma_{j e t}=\int_{p_{t} \min } \frac{d^{2} \sigma_{j e t}}{d^{2} \vec{p}_{t}} d^{2} \vec{p}_{t}= \\
=\sum_{\text {partons }} \int_{p_{t} \text { min }} d^{2} \vec{p}_{t} \int f\left(x_{1}\right) d x_{1} \int f\left(x_{2}\right) d x_{2} \frac{d^{2} \sigma^{\text {partons }}}{d^{2} \vec{p}_{t}}
\end{gathered}
$$

Minijet cross-sections dominated by gluons and similar for $p p, \gamma p$ and $\gamma \gamma$ at high energies when appropriately scaled by $1 / \alpha_{e m}$
$\sigma_{j e t}$ depend on the densities and very dramatically on $p_{\text {tmin }}$ the transverse momentum cut-off

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 11)

Rohini, Godbole CTS, IISc, Bangalore, India.

- $\sigma_{j e t}$ rises with s as a power in violation Frossiart Bound too fast towards $\sigma_{t o t}$.
- Unitarization essential. Done using eikonal formalism
- The steep rise of $\sigma_{j e t}$ with s is NOT reflected in the energy rise of $\sigma_{t o t}, \sigma_{i n e l}$.
With increasing energy the probability of multiple parton scattering (MPS) in a given hard scatter increases

Transverse Overlap of the hadrons
$\sigma_{A B}^{j e t}(s)=<n_{\text {pair }}^{j e t}>(s) \sigma_{A B}^{\text {inel }}(s)$
Rising MPS \Rightarrow rising jet pair multiplicity
Need to calculate the s dependence of $\left\langle n_{\text {pair }}^{j e t}\right\rangle$.
Perhaps need to go beyond pQCD.
s dependence related to that of the MPS probability.
This in turn decided by the overlap of the partons in the transverse plane.
$A_{A B}(\beta)=\int d^{2} b_{1} \rho_{A}\left(\overrightarrow{b_{1}}\right) \rho_{B}\left(\vec{\beta}-\overrightarrow{b_{1}}\right)$
Governing quantity \# of collisions:

$$
n(b, s)=A_{A B}(b, s) \sigma(s)=2 \chi_{I}(b, s)
$$

$\chi(b, s)::$ EIKONAL function.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 12)

Rohini, Godbole CTS, IISc, Bangalore, India.

Calculate then $\sigma^{\text {inel }}$ for for example $A, B=p, \bar{p}$,

$$
\sigma_{p p(\bar{p})}^{\mathrm{innel}}=2 \int d^{2} \vec{b}\left[1-e^{-n(b, s)}\right]
$$

Build $\mathrm{n}(\mathrm{b}, \mathrm{s})$ for $\sigma^{\text {inel }}$ and use it for

$$
\sigma_{p p(\vec{p})}^{\text {tot }}=2 \int d^{2} \vec{b}\left[1-e^{-n(b, s) / 2} \cos \left(\chi_{R}\right)\right], \chi_{R}=0 \text { in EMM }
$$

b is impact parameter \Longrightarrow transverse momentum of partons in hadrons

Approximations

$$
\begin{aligned}
& \text { - separate Pert. Vs Nonpert. terms } \\
& \rightarrow n(b, s)=n_{N P}(b, s)+n_{P}(b, s)
\end{aligned}
$$

- Further factorize b vs. s behaviour

$$
\rightarrow n(b, s) \approx A(b) \sigma(s)
$$

simplest model $n(b, s)=A(b)\left[\sigma_{\text {soft }}+\sigma_{j e t}\right]$
\Uparrow
matter distribution
\checkmark Model for A(b).
$\checkmark \sigma_{\text {soft }}$ parametrized
$\checkmark \sigma_{j e t}$ LO QCD jet x-sections
« Eikonal model not restricted to calculate ONLY c.sections also used to calculate properties of hadronic events. pioneering: T. Sjostrand, More recent : M. Seymore + Borozan JHEP (2002).

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

At low energies and small $\sigma^{j e t}$
$\sigma_{A B}^{\text {inel }}=2 \int d^{2} \vec{b}\left[1-e^{-n(b, s)}\right] \simeq \sigma_{A B}^{s o f t}+\sigma_{A B}^{j e t}$
At high energies, the eikonalisation softens the energy rise of $\sigma^{i n e l}$ compared to that of $\sigma^{j e t}$.
\checkmark Eikonal $\chi(b, s)$ contains information on the energy and the transverse space distribution of the partons in the hadrons.
$\checkmark \sigma^{j e t}$ depends on the parton densities $f_{q / A}\left(x_{1}\right), f_{q / B}\left(x_{2}\right) x_{i}$ the longitudinal mmtm fraction
\checkmark Overlap function on the transverse space (momentum) distribution.
Thus simplest formulation with minijets to drive the rise and eikonalization to ensure unitarity :
$2 \chi_{I}(b, s) \equiv n(b, s)=A(b)\left[\sigma_{s o f t}+\sigma_{j e t}\right]$
The normalization depends both on $\sigma_{\text {soft }}$ and on the b-distribution.

How to calculate the transverse overlap function in terms of 'measured' quantities?

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

The simplest hypothesis, is

$$
\begin{equation*}
A_{a b}(b) \equiv A\left(b ; k_{a}, k_{b}\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} \vec{q} e^{i q \cdot b} \mathcal{F}_{a}\left(q, k_{a}\right) \mathcal{F}_{b}\left(q, k_{b}\right) \tag{1}
\end{equation*}
$$

$\mathcal{F}_{i}\left(q, k_{i}\right)$ are the e.m. form factors

- How to generalise this for photons?
$\downarrow \gamma$ has to 'hadronise'. Treatment of MPS for photons
has to be different (Collins and Ladinsky.
\checkmark One choice for \mathcal{F} is to use form factor of π.
\downarrow Corsetti, Pancheri and RG: Use for \mathcal{F} Fourier Transform of the transverse momentum distribution of partonic photons measured by ZEUS. Functional form similar to using \mathcal{F}_{π} but with a different value of the parameter.
To calculate $\sigma^{t o t}$ for photon-induced processes,
$\sigma_{\gamma p)}^{\text {tot }}=\mathcal{P}_{h a d} 2 \int d^{2} \vec{b}\left[1-e^{-n(b, s) / 2}\right.$
where
$n(b, s)=A(b)\left[\sigma^{s o f t}+\frac{1}{\mathcal{P}_{\text {had }}} \sigma^{j e t}\left(s, p_{\text {Tmin }}\right]\right.$
with $\mathcal{P}_{\text {had }}=\mathcal{P}_{\text {VMD }}$.
For $\gamma \gamma$:

$$
\begin{aligned}
& >\sigma_{\gamma \gamma}^{\text {tot }}=2 P_{h a d}^{\gamma \gamma} \int d^{2} \vec{b}\left[1-e^{-n(b, s) / 2}\right] \\
& >n(b, s)=2 / 3 n_{\text {soft }}^{\gamma p}+A(b)_{F F} \sigma_{\text {jet }}^{\gamma \gamma}(s) / P_{h a d}^{\gamma \gamma} \\
& >P_{h a d}^{\gamma \gamma}=\left[P_{h a d}\right]^{2}
\end{aligned}
$$

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

Photo-production and extrapolated datas from DIS can be described through the Eikonal Minijet Model with Form Factors and QCD densities : low energy scaled from proton proceses.

The band is corresponds to $k_{0}=0.66 \pm 0.22 \mathrm{GeV}$ (ZEUS measurement)

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

Then

\uparrow Using EMM, with VMD and Quark Counting at low energy, and same set of parameters which fit γp
\checkmark adjusting the overall normalization 10% upwards,
$\checkmark k_{0}=0.4$ corresponds to the upper edge in the γp band. one gets a very good fit to the present data

Data for $\gamma \gamma$ total x -sections show a fast rise which can be reproduced with EMM

Use of 'measured' properties of the γ, p and factorisaation, simple quark counting rule to connect γp parameters to $\gamma \gamma$ case.
Normalization here is 10% off what you get from γp

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 17)

Rohini, Godbole CTS, IISc, Bangalore, India.

Already at $\sqrt{s}=500 \mathrm{GeV}$ predictions differ by a factor 3

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 18)

Rohini, Godbole CTS, IISc, Bangalore, India.

\checkmark for $p p$ and $p \bar{p}$

M. Block, R. Fletcher, F. Halzen, B. Margolis

PRD41(1990)978

$$
\sigma_{t o t}=2 \int^{2} \vec{b}\left[1-e^{-\chi_{I}} \cos \chi_{R}\right]
$$

with

$$
\chi / 2=P_{g g}+P_{g q}+P_{q q}
$$

and

- $P_{i j}=W_{i j}\left(b, \mu_{i j}\right) \sigma_{i j}(s)$
- $W(b, \mu)=\int \frac{d^{2} \vec{q}}{(2 \pi)^{2}} e^{i b \cdot q}[\mathcal{F}(q)]^{2}$
- $\mathcal{F}(q)=\left(\frac{\mu^{2}}{\mu^{2}+q^{2}}\right)^{2}$ Dipole Form Factor
$\mu_{q q}, \mu_{g q} \mu_{g g}$ for each P
- $\sigma_{i j}=Q C D$ inspired and parametrized using $p p$ and $p \bar{p}$ data on elastic and total cros-sections.

\checkmark for γp and $\gamma \gamma$
M. Block, E. Gregores and F. Halzen, Phys.Rev.D60 (1999) 054024, also M. Block,Kang.
use factorization and VMD to get the $P_{i j}$ N.B.
$f^{i / \gamma}\left(Q^{2}, x\right)$ not used!

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 19)

Rohini, Godbole CTS, IISc, Bangalore, India.

Fit the $p p$ and $p \bar{p}$ data and calculate $\gamma \gamma$ (for example) using the Eional obtained using factorisation and quark counting.

May 2005
Les Houches TeV Collider Workshop.

Perturbative QCD
and the Energy Dependence (page of total cross-sections 20)

Rohini, Godbole
CTS, IISc,
Bangalore, India.

It is possible to describe the early rise, which takes place around $10 \div 30 G e V$ for proton-proton and proton-antiproton scattering, using GRV densities and a $p_{t m i n} \simeq 1 G e V$, but then the cross-sections start rising too rapidly, whereas a $p_{t m i n} \approx 2 G e V$ can reproduce the Tevatron points but it misses the early rise.

\checkmark The rise for $p p / \bar{p} p$ is too rapid for $p_{\text {Tmin }} \simeq 1 \mathrm{GeV}$ and miss early rise if $p_{T m i n} \simeq 2 \mathrm{GeV}$.
\checkmark The best fit to the $\gamma \gamma$ data require 10% upward normalisation relative to γp data.
\checkmark No explanation for the initial decrease.

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 21)

Rohini, Godbole CTS, IISc, Bangalore, India.

EMM model does O.K. qualitatively but is certainly not the whole story.
Improve the model by removing the approximations used.
Recall assumed $n(b, s)=A(b)\left[\sigma_{s o f t}+\sigma_{j e t}\right]$.

- The separation between s and b dependence only an approximation.
- Writing the overlap function as a $\mathcal{F} . \mathcal{T}$. of measured distributions does not allow for a s dependence of A
Pancheri and Collab. developed a model based on semi-classical method to calculate the impact parameter space distribution of partons in a hadron using resummation of soft gluon emissions.

$A(b, s)=A(b, M(s))$.
Here $M=<q_{\max }(s)>$ is the average of the 'maximum' energy allowed for single soft gluon emission.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 22)

Rohini, Godbole CTS, IISc, Bangalore, India.

EMM needs further refinements, including

full LLO resummation to tame the rise

$$
n(b, s)=n_{s o f t}(b, s)+A_{P Q C D}(b, s) \sigma_{j e t}^{L O}
$$

Soft gluons can tame the rise

$$
\begin{aligned}
& A(b) \Longrightarrow \\
& A(b, s) \simeq \int d^{2} \vec{K}_{t} e^{i \vec{K}_{t} \cdot \vec{b}} \Pi\left(K_{t} \text { from initial partons }\right)
\end{aligned}
$$

$$
A_{P Q C D}(b, s) \equiv \frac{e^{-h(b, s)}}{\int d^{2} \vec{b} e^{-h(b, s)}}
$$

- $h(b, s)=\int_{k_{\text {min }}}^{k_{\text {max }}} d^{3} \bar{n}_{\text {gluons }}(k)\left[1-e^{i k_{t} \cdot b}\right]$
- $k_{\max } \Longrightarrow$ average over densities \Uparrow as $\sqrt{s} \Uparrow$
- $k_{\min }=0$ in principle but one needs a model for

$$
\alpha_{s}\left(k_{t}\right) \text { as } k_{t} \rightarrow 0
$$

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 23)

Rohini, Godbole CTS, IISc, Bangalore, India.

The Bloch Nordsieck model

- is like EMM model with $\sigma_{\text {jet }}^{Q C D}$ driving the rise
and in addition
Soft Gluon Emission from Initial State Valence Quarks in k_{t}-space to give impact parameter space distribution of colliding partons
- introduces energy dependence in the b-distribution of partons in the hadrons \Longrightarrow which depends on

1. $p_{\text {tmin }}$
2. parton densities

Two main results :

1. softening effect
2. dependence of hard scattering parameters is reduced

The softening effect happens

- as $\sqrt{s} \Uparrow$ the phase space available for soft gluon emission also \Uparrow
\checkmark the transverse momentum of the initial colliding pair due to soft gluon emission \Uparrow
\downarrow more straggling of initial partons \Rightarrow less probability for the collision

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

The energy dependence which ultimately will soften the rise due to mini-jets comes from the

maximum transverse momentum allowed to a single gluon.

$$
q_{\max }(\hat{s})=\frac{\sqrt{\hat{s}}}{2}\left(1-\frac{\hat{s}_{j e t}}{\hat{s}}\right)
$$

with integration to be done over

- \hat{s} the energy of the initial parton-parton subprocess -the jet-jet invariant mass $\sqrt{\hat{s}_{j e t}}$,

Averaging over densities

$$
=\frac{\sqrt{s}}{2} \frac{\sum_{i, j} \int \frac{d x_{1}}{x_{1}} f_{i / a}\left(x_{1}\right) \int \frac{d x_{2}}{x_{2}} f_{j / b}\left(x_{2}\right) \sqrt{x_{1} x_{2}} \int d z(1-z)}{\sum_{i, j} \int \frac{d x_{1}}{x_{1}} f_{i / a}\left(x_{1}\right) \int \frac{d x_{2}}{x_{2}} f_{j / b}\left(x_{2}\right) \int(d z)}
$$

with the lower limit of integration in the variable z given by $z_{\text {min }}=4 p_{\text {tmin }}^{2} /\left(s x_{1} x_{2}\right)$.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 25)

Rohini, Godbole CTS, IISc, Bangalore, India.

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 26)

Rohini, Godbole CTS, IISc, Bangalore, India.

> Soft and hard component of $\mathrm{n}(\mathrm{b}, \mathrm{s})$ in the three models

The average number of collisions in the form factor model and the Bloch Nordsieck model, at LHC energy

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 27)

Rohini, Godbole CTS, IISc, Bangalore, India.

The Effect of the Soft Gluon Summation model can be observed in the

Integrand of the eikonal formulation for $\sigma_{t o t}$ in the three different models

The integrand is peaked at different b-values as the energy increases, but also as the model for $A(b)$ changes.
The rise with energy of the area under the curve, i.e. the cross-section, at the same energy shrinks for the more singular α_{s} behaviour.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 28)

Rohini, Godbole CTS, IISc, Bangalore, India.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 29)

Rohini, Godbole CTS, IISc, Bangalore, India.

Now make fits to the $p p$ and $p \bar{p}$ in the Bloch-Nordsieck (BN) model , the eikonal is of the form

$$
n(b, s)=\sigma_{\text {soft }} A_{B N}^{\text {soft }}+\sigma_{j e t} A_{B N}^{j e t}
$$

Soft gluon emission has here a twofold effect as the energy increases :

- with $\sigma_{\text {soft }}$ constant or $\Downarrow \sigma_{\text {soft }} A_{B N}^{\text {soft }} \Downarrow$
- with $\sigma_{j e t} \Uparrow$
$\sigma_{j e t} A_{B N}^{j e t} \Uparrow$ but not as much as without soft gluons

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 30)

Rohini, Godbole CTS, IISc, Bangalore, India.

A good description is obtained with a soft part given by

$$
\sigma_{s o f t}^{p p}=\sigma_{0} A_{B N}^{s o f t}(b, s) \quad \sigma_{0}=48 m b
$$

and

$$
\sigma_{s o f t}^{p \bar{p}}=\sigma_{0}\left(1+\frac{2}{\sqrt{s}}\right) A_{B N}^{s o f t}(b, s)
$$

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 31)

Rohini, Godbole CTS, IISc, Bangalore, India.

- Indeed the rms distance between the centres of two hadrons decreases with energy causing more shadowing and taming the rise
- Similar observation by M. Seymore and collab. from a study of properties of the events in $p \bar{p}$ data from CDF in an eikonal picture.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 32)

Rohini, Godbole CTS, IISc, Bangalore, India.

May 2005
Les Houches TeV Collider Workshop.

Perturbative QCD
and the Energy Dependence (page of total cross-sections 33)

Rohini, Godbole CTS, IISc, Bangalore, India.

May 2005
Les Houches TeV Collider Workshop. of total cross-sections 34)

Rohini, Godbole CTS, IISc, Bangalore, India.

Recall M depended on the parton densities in the hadron. BN effect stronger for protons.

May 2005
Les Houches TeV Collider Workshop.

Perturbative QCD
and the Energy Dependence (page of total cross-sections 35)

Rohini, Godbole CTS, IISc, Bangalore, India.

1. Soft part of the eikonal $n(b, s)$ directly from proton and antiproton processes $\rightarrow n_{\text {soft }}^{\gamma \gamma}(b, s)$ given by $\frac{4}{9} \frac{n_{s o f t}^{p p}+n_{s o f t}^{p \bar{p}}}{2}$ using fit to protons,
2. soft resummation for hard scattering,

\checkmark Large differences between EMM in the FF formulation and BN resummed form.
$\bullet A_{\text {soft }}^{B N}$ and $A_{\text {hard }}^{B N}$ give the early fall and the taming of the fast rise.

The normalisation and rise seem to be fixed simultaneously.

May 2005
Les Houches TeV Collider Workshop.
and the Energy Dependence (page of total cross-sections 36)

Rohini, Godbole CTS, IISc, Bangalore, India.

- $\sigma_{t o t}$ for photon induced processes 'seems' to rise faster than for the $p p$ case. Clarification for $\gamma \gamma$ case and newer measurement for the γp from HERA will be much appreciated.
\bullet QCD based models, using exeprimentally measured quark and gluon densities do predict such a faster rise.
\checkmark Plain EMM does need improvement to take into account the energy dependence of the transverse size of hadrons.
\checkmark The soft gluon resummation does seem to predict such a reduction with increasing energy which tames the high energy rise. The model produces the initial decrease too.
\checkmark For Aspen model, simultaneous fits to all the data, assuming factorisation seems to require 'renormalisation' of the $\gamma \gamma$ data. In BN model there seems to be loss of factorisation in going from pp to γp.
\checkmark The transverse overlap function derived in BN model can be confronted with data by using it to make predictions for the hadronic properties of the events in the eikonal model.

May 2005
Les Houches TeV Collider Workshop.

Rohini, Godbole CTS, IISc, Bangalore, India.

