CDF/D0 PYTHIA Tutorial

Fermilab, December 7, 2004

Physics News in PYTHIA 6.3

Peter Skands, Fermilab

Part I:

- New underlying event framework
- New p_{\perp} -ordered parton showers
- Overview of relevant parameters

Part II:

The SUSY Les Houches Accord

New UE Framework: WHY BOTHER?

- QCD point of view: hadron collisions are highly complex, while present descriptions are not. Should be possible to gain further physics insight.
- LHC point of view: any reliable extrapolation will require such insight. Simple parametrizations are not sufficient.
- New Physics and precision point of view: random and systematic fluctuations in the underlying activity can impact measurements: More reliable understanding is needed.
- Obvious point of view: Lots of fresh data from Tevatron: Great topic for phenomenology right now

New Parton Shower: WHY BOTHER?

- Some common approaches to showers: Parton Showers (e.g. HERWIG, PYTHIA) and Dipole Showers (e.g. ARIADNE). Each has pros and cons.
- Idea was to combine the virtues of each of these while avoiding the vices.

News in PYTHIA 6.3

PYTHIA 6.3 includes new ISR and FSR parton showers, based on a p_{\perp} -ordered sequence of $1 \rightarrow 2$ parton splittings.

It also includes a new model for multiple parton-parton interactions (for underlying events and min-bias).

Further, the description of parton showers and the underlying event has been unified in a common p_{\perp} -ordered 'interleaved evolution' of the event as a whole.

(The PYTHIA 6.2 shower and underlying-event framework remains in PYEVNT, while the new options are obtained by using PYEVNW instead.)

THE NEW FRAMEWORK

Interactions

+ showers

+ remnants

New Multiple Interactions: Some Details

Correlated PDF's:

- Momentum and Energy in parent hadron conserved.
- Sum rules for valence quarks respected. (Can't kick the same quark out twice!)
- **Sea quarks knocked out** \rightarrow 'companion quarks'.

Hadronization:

- Possible to have composite objects in the beam remnants, e.g. diquarks.
- Addressing 'baryonic' colour topologies \rightarrow 'string junctions' in the colour confinement field.

Colour Correlations:

- The big question! Seems Nature likes a very high degree of correlation (cf. 'Tune A' of old model!).
- Several possibilities investigated, so far without success.

New p_{\perp} -ordered parton showers

<u> p_{\perp} ordering</u> \Rightarrow coherence inherent, while kinematics still simple and Lorentz invariant

(cf. quite messy kinematics and L/I in HERWIG, coherence not inherent and slightly messy kinematics in "old" PYTHIA).

<u> p_{\perp} ordering</u> \Rightarrow Merging with Matrix Elements also simple (cf. complicated in HERWIG — "dead zone")

It's still a parton shower, so $g \rightarrow q\overline{q}$ not principally different from other branchings and ISR no problem (cf. 'artificial' in ARIADNE)

showers can be stopped and restarted at any p_{\perp} scale (\Rightarrow well suited for ME/PS matching)

New p_{\perp} -ordered parton showers

 p_{\perp} ordering \Rightarrow coherence inherent, while kinematics still simple and Lorentz invariant (cf. quite messy kinematics and L/I in HERWIG, coherence

not inherent and slightly messy kinematics in "old" PYTHIA).

<u> p_{\perp} ordering</u> \Rightarrow Merging with Matrix Elements also simple (cf. complicated in HERWIG — "dead zone")

It's still a parton shower, so $g \rightarrow q\overline{q}$ not principally different from other branchings and ISR no problem (cf. 'artificial' in ARIADNE)

showers can be stopped and restarted at any p_{\perp} scale (\Rightarrow well suited for ME/PS matching)

 p_{\perp} evolutions of showers and multiple interactions can be combined \rightarrow *common* evolution of ISR, FSR, and MI! \equiv 'Interleaved Multiple Interactions'

P. Skands, Physics News in PYTHIA 6.3 - p.7/17

Interleaved Evolution, what is that?

The new picture: start at the most inclusive level, $2 \rightarrow 2$. Add exclusivity progressively by evolving *everything* downwards.

The New Framework

The building blocks:

- p_{\perp} -ordered multiple interactions. 🗸
- p_{\perp} -ordered initial-state parton showers.
- p_{\perp} —ordered final—state parton showers.
- \square p_{\perp} used as scale in α_s and in PDF's.
- (Model for) correlated multi-parton densities.
- Beam remnant hadronization model.
- Model for initial state colour correlations. (
- Other phenomena? (e.g. colour reconnections (), ...)
- Realistic tunes to data (so far only for FSR...)

Model Tests: FSR

FSR algorithm.

Tested on ALEPH data (G. Rudolph).

		$\sum \chi^2$ of model	
Distribution	nb.of	PY6.3	PY6.1
of	interv.	p_\perp -ord.	mass-ord.
Sphericity	23	25	16
Aplanarity	16	23	168
1–Thrust	21	60	8
Thrust _{minor}	18	26	139
jet res. $y_3(D)$	20	10	22
$x = 2p/E_{\rm cm}$	46	207	151
$p_{\perp \mathrm{in}}$	25	99	170
$p_{\perp { m out}} < 0.7~{ m GeV}$	7	29	24
$p_{\perp \mathrm{out}}$	(19)	(590)	(1560)
x(B)	19	20	68
sum $N_{ m dof} =$	190	497	765

• (Also, generator is not perfect. Adding 1% to errors \Rightarrow $\sum \chi^2 = 234$. i.e. generator is 'correct' to ~1%)

Model Tests: ISR

ISR algorithm.

- Less easy to test. We looked at p_{\perp} of Z^0 at Tevatron.
- Compared "Tune A" with an 'intermediate scenario' ("Rap"), and three rough tunes of the new framework.
- Description is improved (but there is still a need for a large primordial k_{\perp}).

Model Tests

Whole framework.

- The rough tunes were made to 'Tune A' at the Tevatron, using charged multiplicity distribution and $\langle p_{\perp} \rangle (n_{\rm ch})$, the latter being highly sensitive to the colour correlations.
- Similar overall results are achieved (not shown here), but $\langle p_{\perp} \rangle (n_{\rm ch})$ still difficult.
- Anyway, these were only rough tunes...

Outlook

New complete framework for hadron collisions has been developed. Includes p_{\perp} -ordered *interleaved* parton showers and multiple interactions, correlated remnant parton distributions, impact parameter-dependence, extended (junction) string fragmentation model, etc.

- It's all in PYTHIA 6.316 (24 Nov 2004).
- Good overall performance, though still only primitive studies/tunes carried out, except for FSR.
- Colour correlations still a headache. Still unclear what role *intertwining* may play.

Outlook

Conclusion: our picture of hadron collisions is becoming more complex...

PYTHIA 6.3 OVERVIEW OF RELEVANT PARAMETERS

PYTHIA 6.3 Parameter Overview: Switches

- MSTP(61) Master switch for initial-state radiation. Default is on.
- MSTP(71) Master switch for final-state radiation. Default is on.
- MSTP(81) Master switch for multiple interactions and beam remnant framework.
- MSTP(70) Selects regularization scheme for ISR when $p_{\perp} \rightarrow 0$. Default is sharp cutoff at the regularization scale used for MI.
- MSTP(72) Selects maximum scale for radiation off FSR dipoles stretched between ISR partons. Default is p_{\perp} scale of radiating parton.
- MSTP(82) Selects which functional form to assume for the impact-parameter dependence of the matter overlap between two beam particles.
- MSTP(84) Selects whether initial-state radiation is turned on or off for subsequent interactions (i.e. interactions after the main one). Default is on.
- MSTP(85) Selects whether final-state radiation is turned on or off for subsequent interactions (i.e. interactions after the main one). Default is on.
- MSTP(89) Controls how initial-state parton shower initiators are colourconnected to each other. Default is to assume a rapidity ordering.
- MSTP (95) Selects whether colour reconnections are allowed or not. Default is on.

PYTHIA 6.3 Parameter Overview: Parameters

- PARP (82) Regularization scale, $p_{\perp 0}$, for multiple interactions, at reference energy PARP (89). Default is 2 GeV.
- PARP (89) Reference energy for energy rescaling of $p_{\perp 0}$ cutoff, i.e. the energy scale at which $p_{\perp 0}$ is equal to PARP (82). Default is 1800 GeV.
- PARP (90) Power of energy rescaling used to determine the value of $p_{\perp 0}$ at scales different from the reference scale PARP (89).
- PARP (83:84) Shape parameters, controlling the assumed matter distribution or overlap profile, as applicable (i.e. depending on MSTP(82)).
 - PARP (78) Controls the amount of colour reconnection in the final state.
 - PARP (79) Enhancement factor for x values of composite systems (e.g. diquarks) in the beam remnant.
 - PARP (80) Suppression factor for initial–state colour connections that would break up the beam remnant.

More information on PYTHIA 6.3

The PYTHIA 6.3 manual: hep-ph/0308153

- "Notes on using PYTHIA 6.3": on my homepage: http://home.fnal.gov/~skands/
- Physics descriptions of the new ISR/FSR/MI framework:
 - TS+PS, "Transverse-Momentum-Ordered Showers and Interleaved Multiple Interactions", hep-ph/0408302.
 - TS, "New Showers with transverse-momentum-ordering", hep-ph/0401061.
 - TS+PS, "Multiple Interactions and the Structure of Beam Remnants", JHEP 0403 (2004) 053.
- + Slides like these.

(See "Slides/Talks" on my homepage for a complete list)