Bottom Fragmentation in Higgs and Top Decay

Gennaro Corcella

 $CERN \ TH$

- **1.** $H \rightarrow b\bar{b}$ at NLO
- 2. Collinear and soft resummation
- 3. Bottom quark spectrum in Higgs and top decay
- 4. *B*-hadron production
- 5. Conclusions

G.C. and A.D. Mitov, NPB 623 (2002) 247;
M. Cacciari, G.C. and A.D. Mitov, JHEP 0212 (2002) 015;
G.C., Nucl. Phys. B705 (2005) 363

For Higgs searches at Tevatron and LHC, precise QCD calculations are necessary

Fixed-order calculations (NLO) are reliable to predict inclusive observables

Differential distributions present large terms $\alpha_S^n L^m$ corresponding to collinear $(\theta \to 0)$ or soft $(E_g \to 0)$ parton radiation, which need to be resummed

Recent calculation implemented soft and collinear resummation in $H \rightarrow b\bar{b}$ processes

At the Tevatron ($m_H \leq 130$ GeV), the favourite Higgs discovery channel is: $p\bar{p} \rightarrow VH$, $H \rightarrow b\bar{b}$, $V \rightarrow \ell_1 \ell_2$

At the LHC, larger QCD backgrounds

 $H \to b\bar{b}$ is still relevant for $m_H \leq 140$ GeV and $pp \to t\bar{t}H$, $pp \to WH$, vector boson fusion $W^+W^-(ZZ) \to H$

Bottom quark production in Higgs decay at NLO

$$\frac{1}{\Gamma_0}\frac{d\Gamma}{dx_b} = \delta(1-x_b) + \frac{\alpha_S(\mu)}{2\pi} \left[P_{qq}(x_b) \ln \frac{m_H^2}{m_b^2} + A(x_b) \right] + \mathcal{O}\left[\left(\frac{m_b}{m_H}\right)^p \right]$$

Altarelli–Parisi splitting function:

$$P_{qq}(x_b) = C_F \left[\frac{1+x_b^2}{(1-x_b)_+} + \frac{3}{2}\delta(1-x_b) \right] = C_F \left(\frac{1+x_b^2}{1-x_b} \right)_+$$

Plus prescription:

$$\int_{0}^{1} dx_{b} \frac{f(x_{b})}{(1-x_{b})_{+}} = \int_{0}^{1} dx_{b} \frac{f(x_{b}) - f(1)}{1-x_{b}}$$
$$\alpha_{S}(\mu) \ln \frac{m_{H}^{2}}{m_{b}^{2}} \simeq \mathcal{O}(1)$$

Perturbative fragmentation functions

B. Mele and P. Nason, NPB 361 (1991) 626

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dx_b} (x_b, m_b \neq 0) = \frac{1}{\Gamma_0} \sum_i \int_{x_b}^1 \frac{dz}{z} \frac{d\Gamma_i}{dz} (z, m_i = 0, \mu_F) D_i \left(\frac{x_b}{z}, \mu_F, m_b\right) + \mathcal{O}\left[\left(\frac{m_b}{m_H}\right)^p\right]$$

 $D_i(x_b, \mu_F, m_b)$: perturbative fragmentation function (PFF)

$$\frac{1}{\Gamma_0} \frac{d\hat{\Gamma}_b}{dz} = \delta(1-z) + \frac{\alpha_S(\mu)}{2\pi} \left[P_{qq}(z) \left(-\frac{1}{\epsilon} + \gamma_E - \ln 4\pi \right) + \hat{A}(z) \right]$$

$$\hat{A}(z) = C_F \left[\left(\frac{1+z^2}{1-z} \right)_+ \ln \frac{m_H^2}{\mu_F^2} + \left(\frac{2}{3} \pi^2 - \frac{5}{2} \right) \delta(1-z) + 5 - z - \frac{3}{2} \frac{z^2}{(1-z)_+} - (1+z) [\ln(1-z) + 2\ln z] + 6 \frac{\ln z}{(1-z)_+} - 2 \frac{\ln z}{1-z} + 2 \left(\frac{\ln(1-z)}{1-z} \right)_+ \right]$$

 $z \rightarrow 1$: soft-gluon emission

 $\overline{\mathrm{MS}}$ coefficient function:

$$\left(\frac{1}{\Gamma_0}\frac{d\hat{\Gamma}_b}{dz}\right)^{\overline{\mathrm{MS}}} = \delta(1-z) + \frac{\alpha_S(\mu)}{2\pi}\hat{A}_1(z)$$
$$\frac{1}{\Gamma_0}\frac{d\Gamma}{dx_b}(m_b) = \left(\frac{1}{\Gamma_0}\frac{d\hat{\Gamma}_b}{dx_b}(m_b=0)\right)^{\overline{\mathrm{MS}}} \otimes D_b^{\overline{\mathrm{MS}}}(m_b)$$

DGLAP equations for PFF's:

$$\frac{d}{d\ln\mu_F^2} D_i(x_b,\mu_F,m_b) = \sum_j \int_{x_b}^1 \frac{dz}{z} P_{ij}\left(\frac{x_b}{z},\alpha_S(\mu_F)\right) D_j(z,\mu_F,m_b)$$

Initial condition $D(x_b, \mu_{0F})$:

$$D_b(x_b, \mu_{0F}, m_b) = \delta(1 - x_b) + \frac{\alpha_S(\mu_0)C_F}{2\pi} \left[\frac{1 + x_b^2}{1 - x_b} \left(\ln \frac{\mu_{0F}^2}{m_b^2} - 2\ln(1 - x_b) - 1 \right) \right]_+$$

$$D_{N}(\mu_{F}, m_{b}) = \int_{0}^{1} dx \ x_{b}^{N-1} D(x_{b}, \mu_{F}, m_{b})$$

$$\frac{dD_{N}(\mu_{F}, m_{b})}{d \ln \mu_{F}^{2}} = \frac{\alpha_{S}(\mu_{F})}{2\pi} \left[P_{N}^{(0)} + \frac{\alpha_{S}(\mu_{F})}{2\pi} P_{N}^{(1)} \right] D_{N}(\mu_{F}, m_{b})$$

$$D_{N}(\mu_{F}, m_{b}) = D_{N}(\mu_{0F}, m_{b}) \exp \left\{ \frac{P_{N}^{(0)}}{2\pi b_{0}} \ln \frac{\alpha_{S}(\mu_{0F})}{\alpha_{S}(\mu_{F})} + \frac{\alpha_{S}(\mu_{0F}) - \alpha_{S}(\mu_{F})}{4\pi^{2}b_{0}} \left[P_{N}^{(1)} - \frac{2\pi b_{1}}{b_{0}} P_{N}^{(0)} \right] \right\}$$

$$D_N(\mu_F, m_b) = D_N(\mu_{0F}, m_b) \exp \left\{ C_{1,0} \alpha_S(\mu_F) + C_{1,1} \alpha_S(\mu_F) \ln(\mu_F^2/\mu_{0F}^2) \dots + C_{n,n-1} \alpha_S^n(\mu_F) \ln^{n-1}(\mu_F^2/\mu_{0F}^2) + C_{n,n} \alpha_S^n(\mu_F) \ln^n(\mu_F^2/\mu_{0F}^2) + \dots \right\}$$

Resummation of leading logarithms $\alpha_S^n \ln^n(\mu_F^2/\mu_{0F}^2)$ and next-to-leading logarithms $\alpha_S^n \ln^{n-1}(\mu_F^2/\mu_{0F}^2)$

 $\mu_{0F} \simeq m_b$ and $\mu_F \simeq m_H$

Resummation of NLL $\ln(m_H^2/m_b^2)$ (Collinear resummation)

Soft-gluon radiation

Region $x_b \to 1$ corresponds to soft-gluon radiation Bottom quark spectrum presents terms behaving like $1/(1-x_b)_+$ or $[\ln(1-x_b)/(1-x_b)]_+$ for $x_b \to 1$

$$\frac{1}{(1-x_b)_+} \to \ln N \quad \left[\frac{1}{1-x_b}\ln(1-x_b)\right]_+ \to \ln^2 N$$

$$\hat{\Gamma}_N(m_H, \mu, \mu_F) = 1 + \frac{\alpha_S(\mu)C_F}{2\pi} \left[\ln^2 N + \left(\frac{3}{2} + 2\gamma - 2\ln\frac{m_H^2}{\mu_F^2}\right) \ln N + K(m_H, \mu_F) + \mathcal{O}\left(\frac{1}{N}\right) \right]$$

 $z = 1 - x_b, \ k^2 = (p_b + p_g)^2 (1 - z) = 2E_g^2 (1 - \cos \theta_{bg}) \simeq E_g^2 \sin^2 \theta_{bg}$

$$\Delta_N = \exp\left\{\int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \int_{\mu_F^2}^{m_H^2(1-z)} \left[\frac{dk^2}{k^2} A\left[\alpha_S(k^2)\right] + \frac{1}{2} B\left[\alpha_S\left(m_H^2(1-z)\right)\right]\right]\right\} = \exp\left[\ln Ng_1 + g_2\right]$$

S. Catani and L. Trentadue, NPB 327 (1989) 323

$$A(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A^{(n)} \quad ; \quad B(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B^{(n)}$$

 $g_1 \ln N \text{ resums LL } A^{(1)} : \alpha_S \ln^2 N, \alpha_S^2 \ln^4 N \dots \alpha_S^n \ln^{n+1} N$ $g_2 \text{ resums NLL } A^{(2)}, B^{(1)} : \alpha_S \ln N, \alpha_S^2 \ln^2 N \dots \alpha_S^n \ln^n N$

b-quark spectrum in Higgs decay

 $m_H = 120 \text{ GeV}$ $m_b = 5 \text{ GeV}$ $\Lambda_{\overline{\text{MS}}} = 200 \text{ MeV}$ $\mu = \mu_F = m_H$ $\mu_0 = \mu_{0F} = m_b$

Solid: soft and collinear resummation Dots: only collinear resummation

Dashes: massive NLO without resummation

Dependence on the factorization scales

Solid: collinear and soft resummation; dots: only collinear

 $\mu_F = m_H/2, m_H, 2m_H$ $\mu_0 = \mu_{0F} = m_b, \mu = m_H$

 $\mu_{0F} = m_b/2, \, m_b, \, 2m_b \qquad \mu_0 = m_b, \, \mu = \mu_F = m_H$

Dependence on the Higgs mass m_H

Dashes: $m_H = 110 \text{ GeV}$; solid: $m_H = 120 \text{ GeV}$; dots: $m_H = 130 \text{ GeV}$ Comparison of $e^+e^- \rightarrow b\bar{b}$, Higgs and top decay

Solid: Higgs decay; dots: top decay; dashes: e^+e^- at $\sqrt{s} =$ 91.2 GeV; dot-dashes: e^+e^- at $\sqrt{s} = m_H = 120$ GeV $e^+e^- \rightarrow b\bar{b}$: M. Cacciari and S. Catani, NPB 617 (2001) 167; top decay: M. Cacciari, G.C. and A.D. Mitov, JHEP 0212 (2002) 015

Hadron-level results

$$\frac{d\Gamma_{\rm had}}{dx_B}(B) = \frac{d\Gamma_{\rm part}}{dx_b}(b) \otimes D_{np}(b \to B)$$

 $d\Gamma_{\text{part}}/dx_b$ according to PFF approach

Non-perturbative fragmentation functions:

Power law with two tunable parameters:

$$D_{np}(x;\alpha,\beta) = \frac{1}{B(\beta+1,\alpha+1)}(1-x)^{\alpha}x^{\beta}$$

Model of Kartvelishvili et al.:

$$D_{np}(x;\delta) = (1+\delta)(2+\delta)(1-x)x^{\delta}$$

Model of Peterson et al.:

$$D_{np}(x;\epsilon) = \frac{A}{x[1 - 1/x - \epsilon/(1 - x)]^2}$$

Parameters $\alpha, \beta, \delta, \epsilon$ from fits to $e^+e^- \rightarrow b\bar{b}$ data

$$\frac{d\sigma_{\rm had}}{dx_B}(e^+e^- \to B) = \frac{d\sigma_{\rm part}}{dx_b}(e^+e^- \to b\bar{b}) \otimes D_{np}(b \to B)$$

 $d\sigma_{\rm part}/dx_b$ must be computed within the same framework as $d\Gamma_{\rm part}/dx_b$

Results of fits of fragmentation models to e^+e^- data

Preliminary: correlations between data points are neglected ALEPH Collaboration, A. Heister et al., PLB 512 (2001) 30: only *B* mesons SLD Collaboration, K. Abe et al., PRL 84 (2000) 4300: both *b*-flavoured mesons and baryons

 $0.18 \lesssim x_B \lesssim 0.94$

0.90 ± 0.15
16.23 ± 1.37
33.42/32
17.07 ± 0.39
33.80/32
$(1.71 \pm 0.09) \times 10^{-3}$
166.36/32

 $1/\sigma \ d\sigma/dx_B$

Solid: power law; dashes: Kartvelishvili; dots: Peterson

b-flavoured hadron spectrum in Higgs decay

Solid: power law; Dashes: Kartvelishvili

B spectrum in Higgs decay (solid), top decay (dashes) and e^+e^- annihilation (dots) at $\sqrt{s} = m_Z$

Fits in moment space

 e^+e^- annihilation $\sigma^B_N = \sigma^b_N D^{np}_N$

 σ^B_N measured ; σ^b_N calculated ; D^{np}_N fitted

Higgs and top decay: $\Gamma_N^B = \Gamma_N^b D_N^{np} = \Gamma_N^b \sigma_N^B / \sigma_N^b$

Fits to DELPHI data

(ICHEP 2002 Note, DELPHI 2002-069 CONF 603)

	$\langle x \rangle$	$\langle x^2 \rangle$	$\langle x^3 \rangle$	$\langle x^4 \rangle$
e^+e^- data σ^B_N	$0.7153 {\pm} 0.0052$	$0.5401 {\pm} 0.0064$	$0.4236{\pm}0.0065$	0.3406 ± 0.0064
e^+e^- NLL σ^b_N	0.7801	0.6436	0.5479	0.4755
D_N^{np} [B]	0.9169	0.8392	0.7731	0.7163
t-decay NLL Γ_N^b	0.7884	0.6617	0.5737	0.5072
t-decay Γ_N^B	0.7228	0.5553	0.4435	0.3633
<i>H</i> -decay NLL Γ_N^b	0.7578	0.6162	0.5193	0.4473
H -decay Γ_N^B	0.6948	0.5171	0.4015	0.3204

Comparison with Monte Carlo event generators (with V.Drollinger, CMS)

MC generators like HERWIG or PYTHIA are LO+LL programs, with some NLL terms and, after matrixelement corrections, hard real-gluon radiation

No matrix-element corrections for $H \rightarrow b\bar{b}$

Input parameters need to be tuned: gluon effective mass, Λ_{QCD} , cutoff Q_0 for parton shower evolution, hadronization parameters, etc.

Comparison with default PYTHIA

Tuning PYTHIA to ALEPH and SLD data MSTJ(11)=4; PARJ(41)=0.43 PARJ(42)=0.63; PARJ(46)=0.75

Good agreement with NLO+NLL calculation

Using tuned PYTHIA to predict $H \rightarrow b\bar{b}$

Better agreement at hadron level (x_B) ; still problems at parton level (x_b) : tuning PYTHIA perturbative parameters?

Comparison with HERWIG

Most recent tuning: R. Hemingway, OPAL TN652 (2000)

Comparison with B data from ALEPH and SLD

Comparison of HERWIG with NLO+NLL calculation on $H \rightarrow b\bar{b}$

Parton level:

Solid: NLL soft and collinear; dashes: only collinear; dots: NLO; histogram: HERWIG

Hadron level:

Solid lines: NLO+NLL+power law; histogram: HERWIG

Conclusions and outlook

NLO *b* spectrum in $H \rightarrow b\bar{b}$ presents large collinearand soft-enhanced terms

Collinear and soft resummation

Big effect of resummation on b energy distribution

Fits of hadronization models to ALEPH and SLD data in x_B space and to DELPHI in N space

B-hadron spectrum in x_B and *N* spaces

Comparison of $e^+e^- \rightarrow b\bar{b}$, Higgs and top decay

In progress:

Application to Higgs and top physics at Tevatron and LHC

Comparison with Monte Carlo event generators

Matrix-element corrections to $H \rightarrow b\bar{b}$ in HERWIG