
1Lorenzo Moneta, LHCb Software week, 26 May 2005

Proposal for ROOT Math
Libraries

Proposal for ROOT Math
Libraries

• MathLib work package from ROOT SEAL merge
• new proposed structure for Math:

• MathCore and MathMore libraries
• new Vector package for 3D and LorentzVector
• Random, Linear Algebra and Fitting
• Conclusions

2Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

ROOT MathLib Work Package
• Work package from ROOT-SEAL merge

• people: Andras Zsenei, Anna Kreshuk, Lorenzo Moneta, Eddy Offermann

• contribution also from Fermilab: Mark Fischler and Walter Brown

• Main responsibilities for this work package:
• Basic Mathematical functions
• Functions and Fitting
• Random Numbers
• Linear Algebra
• Physics and geometry Vectors (3D and 4D)

• Not considered now, but still relevant :
• Histograms
• Statistics (confidence level)
• Neural Net, multivariate analysis, etc..

3Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Current Math Libraries

4Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

New Math Libraries

5Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

MathCore
• CVS repository mathcore with basic functionality
• build-able as a standalone library (libMathCore.so)

• no dependency on others ROOT packages or external
libraries

• in ROOT is inside libCore for convenience
• content of MathCore:

• Basic and common used mathematical functions
• Random numbers
• Basic numerical algorithms
• 3D and LorentzVectors

• will not use algorithms from GSL
• for ROOT we need to be distributed with free license
• and the GSL is based on the GPL (restricted) license

6Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

MathMore
• will include more mathematical functions

• less used special functions (i.e. Bessel)
• additional and more sophisticated algorithms

• will use interface defined in MathCore
• we will start putting there the C++ wrapper to GSL,

which are now in SEAL
• see http://seal.web.cern.ch/seal/MathLibs/MathCore/html/index.html

• use GSL and build library together
• will include tar file with the needed GSL functions in CVS

• use similar procedure to existing one in ROOT (freetype,
libAfterImage)

• GSL interfaces are not exposed to the users
• repository for needed and useful extra Math functionality

• could include other useful math libraries

7Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Proposed new structure

libCore
(8 MB)

libMathCore
(0.5 MB)

libMathMore
(5 MB)

libMathCore
(0.5 MB)

libMinimizers

libMatrix
(2.5 MB)

• Core Mathematical Library: MathCore
• An extended library: MathMore

8Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Special Functions
• most common and basic functions in MathCore

• gamma functions
• tgamma with log (lgamma) and incomplete Gamma

• Error functions (erf and erfc)
• other less used functions will be in MathMore

• use same namespace, it will be transparent for the user
• Implement the functions using proposed interface to

the C++ standard
• as it is currently done in SEAL

namespace ROOT {
namespace Math {

double cyl_bessel_i (double nu, double x);

......
}
}

• use GSL for the functions present in MathMore
2

9Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Statistical Functions

• Probability functions used in statistics
• Many of these functions are computed using the

gamma and error functions
• those can be in MathCore

• We will have a consistent set of:
• Probability distributions (pdf)

• Gaussian, BreitWigner, Gamma, Chi2, Landau,...
• Cumulative distributions (cdf)

• lower and upper integrals of each pdf we provide
• Inverse of each cdf

• Provide also functionality to generate randoms according
to these pdf’s

• Have also pdf C++ classes to be used for fitting

10Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Numerical Algorithms

• some basic numerical algorithms for
• adaptive integration, differentiation, interpolation, root

finders, simple minimization (1D)
• define interface for these algorithms and have

implementations in MathCore or/and MathMore
• start defining interfaces and API for the algorithms
• import SEAL implementations based on GSL in MathMore
• move what is in ROOT (from TF1) in MathCore

• adapt TF1 to use new classes

• have more sophisticated and less used algorithms
in MathMore
• MonteCarlo integration, Differential Equations, FFT

7

11Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Physics and Geometry Vectors
• Classes for 3D Vectors and LorentzVectors with their

operations and transformations (rotations and boosts)
• specialized vector for geometry and kinematics and not

generic Linear Algebra Vectors
• Merge functionality from ROOT Physics classes and CLHEP

Vector and Geometry packages
• A new prototype with API available since one month

• work in collaboration with Fermilab computing group
(Mark Fischler and Walter Brown)
• contribute in reviewing the code, provide some of the

implementations and the tests
• Developments done in contact with the LHC experiments

• re-use some ideas from CMS Common Vector package
• had useful discussions with some representative from the

4 LHC experiments

12Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

New Vector Classes

• Have minimal interfaces (and possibly stable)
• minimal number of methods and try to avoid

duplications
• no x() and getX() like in CLHEP
• no single setter methods (setX() or setPhi())

• Separate extra functionality in global functions in a
namespace
• deltaR(v1,v2) , invariantMass(q1,q2)
• template functions which can work with any Vector type

with the pre-requisite:
• implements a well defined set of coordinate accessors:

• x(), y(), z(), r(), phi(), theta(), eta(), etc....
• with the current interface works with CLHEP vectors

13Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

New Vector classes properties
• New classes template on the scalar type

• Vector based on single precision (float) to decrease
memory usage and for persistency

• Generic Coordinate type
• describe the Coordinates concept as a type
• have Vectors based on the coordinate system type:

• can have Vectors represented by cartesian (x,y,z), polar
(r, theta,phi) or cylindrical coordinates (rho, eta, phi)

• express this as a template parameter on the Vector
• PositionVector3D<double, Cartesian3D>
• PositionVector3D<double, Polar3D>

• allow conversions and operations between mixed vectors
• can improve performances in some use cases
• some representation can be optimal for persistency

14Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

New Vector classes properties (2)
• Points and Vector distinction

• have in the geometry case (3D) different classes for
Points and Vectors:
• PositionVector

• rotate and translate
• cannot be added and their difference results in a

DisplacementVector
• DisplacementVector

• only rotate
• have cross and dot multiplications

• This distinction is present in the CLHEP Geometry
• but using a common base class

• No need to have this separation for LorentzVectors
• used in kinematics (DisplacementVectors in 4D)

15Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Rotations and Transformations
• 3D Rotations

• describe them according to different representations:
• 3x3 orthogonal matrix representation (9 numbers)
• 3 Euler angles
• Direction Axis (Vector) + angle
• could add also quaternion (4 numbers)

• generic rotation is template on the representation type
• LorentzRotations (Boost + 3D Rotations)

• described by a 4x4 matrix
• symmetric 4x4 in the case of pure Boosts

• 3D Transformations (3D Rotations + Translation)
• described as a 3D Rotation + 3D Vector
• have interface to look like a 4x4 matrix (as CLHEP)

16Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Examples of usage: LorentzVector

• we have Lorentz Vectors based on
• Cartesian4D (x,y,z,t) or (px,py,pz,E)
• CylindricalEta4D (pt, eta, phi, E)
• EEtaPhiMSystem (E, eta, phi, M)
• and we could have more type of system (flexible to extend)

• one based on px,py,pz, M to avoid some numerical
problems (electrons at LHC)

• template class on scalar type and Coordinate type

• use typedef’s to hide template complexity to the users
• typedef BasicLorentzVector<double, Cartesian4D>

LorentzVector;

• typedef BasicLorentzVector<double, CylindricalEta4D>
LorentzVectorPtEtaPhiE;

17Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

LorentzVector Example

LorentzVector v0; // create an empty vector (x=y=z=t=0)
LorentzVector v1(1,2,3,4); // create a vector (x=1, y=2, z=3, t=4)
LorentzVectorPtEtaPhiE v2(1,2,M_PI,5); // create a vector (pt=1,eta=2,phi=PI,E=5)

LorentzVectorPtEtaPhiE v3(v1); // create from a Cartesian4D LV
CLHEP::HepLorentzVector q(1,2,3,4);
LorentzVector v3(q) // create from a CLHEP LV

Accessors

Constructors

double x = v1.x() = v1.px(); // have both x() and px()
double t = v1.t() = v1.e(); // have both t() and e()
double eta = v1.eta();
XYZVector w = v1.vec(); // return vector with spatial components

v1 += v2; v1 -= v2; // additions and subtructions
v3 = v1 + v2;
v3 = v1 -v2;
double a; v1 *= a; v1 /= a; // multipl. and divisions with a scalar
double p = v1.dot(v2); // prefer dot (less ambiguous)

Operations

18Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Connection to Linear Algebra
• Some experiments require easy

connection/conversion
• between 3D/4D Vectors and Linear Algebra Vectors
• between 3D/4D Rotations and Linear Algebra matrices

• Avoid direct dependency on any LA package
• Proposed solution:

• construct and assignment using template member
functions for LA objects implementing the operator[]

• store vector and rotation data in a C array :
• construct/assign from C array pointers (double *)
• return a C array pointer
• able to use Vector/Rotation content in a LA package

• ROOT Linear Algebra allows to create matrices by
copying the data or by using the data

19Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Linear Algebra Example

TVectorD a(3); // ROOT Linear Algebra Vector
XYZVector v1(a,0); // construct vector from x=a[0], y=a[1], z=a[2]

double *dd = a.GetMatrixArray();
XYZPoint p1(dd); // construct point from x=a[0], y=a[1], z=a[2]

TVectorD b(N); // ROOT Linear Algebra Vector containing many vectors

XYZVector v2(b, INDEX); // construct vector from x=b[INDEX], y=b[INDEX+1],...

HepVector c(4); // CLHEP Linear algebra vector

LorentzVector q(c,0); // construct using px=c[0], py=c[1], pz=c[2], E=c[4]

XYZVector v(x,y,z);
double * pp = v.coordinates().data();

TVectorD t(3,pp); // create a new Linear Algebra vector copying the data

TVectorD w;
w.Use(3,p); // fill an existing Vector using the data (no copying)

From a Linear Algebra Vector

To a Linear Algebra Vector

Note that ROOT Linear Algebra Object can use external data storage

20Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Vector Performance Tests

• comparison between CLHEP, ROOT and new
classes for LorentzVector’s
• better results than ROOT because a 4D Vector is not

now based on a 3D object
• factor of 2 improvements in additions of LorentzVectors

• performance improvements if used optimal coordinate
system when needed
• Example: DeltaR for a large set of Vectors

• some order of magnitude in speed improvements

• I/O tests
• some performance obtained with TLorentzVector if

TObject stream is ignored for TLorentzVector
• otherwise performance improvement ~ 20%

21Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Current Status
• Current proposed version available for feedback:

• http://seal.web.cern.ch/seal/MathLibs/GenVector/0-1-0/html/index.html

22Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Vector Feedback
• asked for feedback to LHC experiments and also

ROOT users
• Received very useful comments

• requested connection to Linear Algebra
• representation based on px,py,pz, m instead of E to

avoid negative masses when E >> m
• have well defined set of accessors like x(),y(),z()

• like that to have generic helper functions which can then
be used by the experiment classes

• want some compatibility (inter-operability) with CLHEP
for a smooth migration

• have also concept of coordinate errors for providing
error propagation in the operations

• use quaternion to represent rotations

23Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Some Open questions
• Error handling (related to all Math libraries)

• what to do with Nan and infinities
• Proposed solution:

• throw exception
• In the Vectors have a a simple exception class deriving

from std::runtime_error
• Returning a Nan to the user could be OK for a simple

user application but NOT for a reconstruction job
• Naming convention for member functions

• need to decide on names like x() or X() ?
• advantage of having same signature as CLHEP will

provide some inter-operability
• for ROOT users the TLorentzVector and TVector3

classes will not disappear
• will be implemented as proxy to new classes

24Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Future Work for Vectors

• Solve open issues and finalize implementations
• take into account the feedback received

• Move in the ROOT CVS directory
• Module.mk for building already exist
• need to integrate also the tests

• preferable to have them in same location as the code in a
tests sub-directory

• solve some remaining problems in generating CINT
dictionary for some template member functions

• Should be ready for first ROOT 5 release at the end
of the month

25Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Random Numbers
• Merge CLHEP and ROOT Random number classes
• CLHEP and ROOT have a different design

• ROOT has a common base class for all the engines and
defining also the distributions
• easier to use (no need to create separate classes)

• CLHEP separates distribution classes from engine
classes
• easier to extend if user wants to add new distributions
• distributions classes can have a state

• New design has been proposed to the C++ standard
• Fermilab people are implementing a first version of this

new library
• need to evaluate it and try to re-implement the

TRandom classes using the new library

26Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

New C++ Random Numbers
• design based on generic engine classes and

distributions
• define engine using template parameters:

typedef mersenne_twister<double,32,624,......> mt19937

typedef subtruct_with_carry_01<double,48,10,24>
ranlux64_base_01

• Distribution classes template on value type:
uniform_real<T>, exponential_distribution<T>,
normal_distribution<T>

• class variate_generator<Engine,Distribution> to
generate the random numbers:
mt19937 engine(seed);

uniform_real<double> dist(xMin,xMax);

variate_generator<mt19937, uniform_real<double> > r(engine, dist);

// generate random number xMin < x < xMax

double x = r();

• rather complex for end-users (should not be exposed)

27Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Linear Algebra

• Proposal is to base on ROOT Linear Algebra
• Functionality in ROOT Linear Algebra

• decompositions for solving LA systems
• support for sparse matrices
• support for external data storage
• pre-allocation on the stack up to 6x6 matrix and

optimized inversion
• Consider to move in the long term to template

classes for double/float matrices
• Continue detailed evaluation with new LA packages

• decide if need later a standalone library optimized for
small matrices

• follow evolution of new GLAS (Boost) project

28Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Fitting and Minimization
• Import new C++ Minuit from SEAL in ROOT

• contains all minimizer (Migrad, Simplex) and in
addition the Fumili algorithm

• have already a class which implements TVirtualFitter
• complete with support for Fumili
• it could be migrated soon

• evaluate/merge with minimizer package from Fermilab
• Improve ROOT fitting and minimization interfaces

• current interfaces are too much adapted to old Fortran
Minuit API

• have a more generic interface to satisfy requirements
from different minimizers and fitting algorithms
• new linear and robust fitters

• work is on-going on importing the RooFit package

29Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

Conclusions
• Have first version of MathCore and MathMore

libraries
• Vectors, math functions and basic algorithms for the

first ROOT 5 release (end of June)
• first proposal for Vector package already exists

• fruitful collaboration with CLHEP editors (M.F.)
• received feedback from experiments and ROOT users

• any other comment or feedback is still highly desirable

• Later activities:
• Evaluate new C++ standard Random number

• decide if to use for re-implementing ROOT Random
• detailed evaluation of the Linear Algebra
• improve ROOT Fitting and import RooFit and new C++

Minuit

30Lorenzo Moneta, LCG Application Area meeting, 8 June 2005

References

• Special functions C++ proposal
• link to C++ extension draft (includes Random proposal)

• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1687.pdf

• Statistical functions proposal (for Boost)
• http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1069.pdf

• SEAL Math inventory
• http://seal.web.cern.ch/seal/snapshot/work-

packages/mathlibs/mathTable.html

• SEAL MathCore reference doc (GSL C++ wrappers)
• http://seal.web.cern.ch/seal/MathLibs/MathCore/html

• Proposal for new Physics Vectors
• http://seal.web.cern.ch/seal/MathLibs/GenVector/0-0-2/html/index.html

