Interplay

of Flavour and Collider Physics

Tobias Hurth, CERN

Les Houches Workshop, May 17 2005

- Interplay of LHC and LC: Complementarity of discovery and precision machine ⇒ LHC/LC study group
- However: LC will not be built before 2016 (optimistic!)
- Obvious question: What is the role of the flavour factories in this game?
- Experimental 'Roadmap' of flavour physics:
 - e^+e^- -B-experiments: B factories (Babar,Belle) \geq 1999, CLEO III \geq 2000, Upgraded B factories, Super B factories \geq 2010
 - Hadronic *B*-experiments: Tevatron II \geq 2001, LHC (Atlas,CMS,LHCb) \geq 2007, ((*B*TeV \geq 2009))
 - Kaon-experiments: Kopio, BNL $(K_L \rightarrow \pi^0 \nu \bar{\nu})$, NA 48/3, CERN $(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ ≥ 2010

Two Examples:

- Exploration of higher scales via rare decays
- Correlations between *B* and collider physics via squark mixing within Susy

Exploration of higher scales via flavour observables

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda} \mathcal{O}_i^{(5)} + \dots$$

- SM as effective theory valid up to cut-off-scale Λ
- $K^0 \bar{K}^0$ -mixing $\mathcal{O}^6 = (\bar{s}d)^2 \Rightarrow \Lambda > 100 \text{ TeV}$

 $\Rightarrow c^{SM}/M_W^2 \times (\bar{s} d)^2$

 $c^{New}/\Lambda^2 \times (\bar{s} d)^2$

• Natural stabilisation of Higgs boson mass $\Rightarrow \Lambda \sim 1 \text{TeV}$ i.e. supersymmetry, superpartner: $\Lambda_{SUSY} \preceq 1 \text{TeV}$

 Expectation: flavour mixing restricted by additional symmetries
 Rare decays and specific CP violating observables allow to analyse flavour symmetry breaking

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda} \mathcal{O}_i^{(5)} + \dots$$

- Flavourblind elektroweak structure of \mathcal{O}_i :
 - connects various (theoretically clean !) observables:
 - i.e. $A_{CP}(B_d \to \Phi K_S) \Leftrightarrow BR(B \to X_s \gamma)$

- allows for model-independent analysis:

 $BR(B \to X_s \ell^+ \ell^-), A_{FB}(B \to X_s \ell^+ \ell^-), A_{CP}(B \to X_s \gamma), \\BR(B \to \ell^+ \ell^-), BR(K^+ \to \pi^+ \nu \bar{\nu}), BR(B \to X_s \nu \bar{\nu}), \dots$

• Flavour part of \mathcal{O}_i :

new flavour structures, i.e. squark-mixing in SUSY
 or

- minimal flavour violation
- * flavour symmetry / CP broken by Yukawa couplings only

*
$$[b \to s] \leftrightarrow [b \to d] \leftrightarrow [s \to d]$$

* RG-invariant definition (d'Ambrosio et al.)

Theoretically clean flavour violating rare decays are very sensitive to possible new degrees of freedom:

 \leftrightarrow elektroweak precision data (10% \leftrightarrow 0.1%)

 $\sigma(V_{ij}) = 1\%$

 $\mathcal{B}(B \to X_s \gamma)$

(courtesy of Gino Isidori)

This indirect information is analogous to some direct information a linear collider could provide.

Correlations between *B* and **Collider physics** via squark mixing within SUSY

- In the unconstrained MSSM there are (too many ?) new contributions to flavour violation
 - CKM induced contributions from H^+ , χ^+ exchanges
 - flavour mixing in the sfermion mass matrix

- Super KM basis $\tilde{q}_{L,Rj}$ (j = 1, 2, 3)
 - quark mass matrices are diagonal !
 - squarks are rotated 'parallel' to their fermionic superpartners !
 - in general not mass eigenstates: $\tilde{q}_{L,R} = \Gamma_{QL,R}^+ \tilde{q}_i$

Sfermion mass matrix in uMSSM in $\tilde{q}_{L,R}$ basis:

$$\mathcal{M}_{D}^{2} = (F/D)_{6\times 6}^{D} + \begin{pmatrix} m_{Q,LL}^{2} & m_{D,LR}^{2} \\ m_{D,RL}^{2} & m_{D,RR}^{2} \end{pmatrix}$$

$$\mathcal{M}_{U}^{2} = (F/D)_{6\times 6}^{U} + \left(\begin{array}{cc} m_{Q,LL}^{2} & m_{U,LR}^{2} \\ m_{U,RL}^{2} & m_{U,RR}^{2} \end{array}\right)$$

from F, D termsfrom soft breaking 3×3 diagonal submatrices m_i^2 not diagonal

all neutral gaugino couplings are flavour diagonal!

 \Rightarrow FCNC are induced by off-diagonal (off-generational) terms in $m^2_{LL}, m^2_{RR}, m^2_{LR}$

- General: $s \to d$ and $b \to d$ sector strongly constrained by data (kaon physics), but $b \to s$ not (yet?).
- New analysis of $b \rightarrow s$ sector Besmer, Greub, Hurth: Interference effects weaken the bounds significantly: \Rightarrow new constraints of order 10^{-1} only.
- Consider correlations of flavour and collider physics Hurth, Porod

Squarks can have large flavourviolating decay modes (compatible with present data from flavour physics).

More details (Nucl.Phys.D609,095001 (2001)):

Analysis based on a complete LL QCD calculation within the unconstraint $\ensuremath{\mathsf{MSSM}}$:

• We use the mass-eigenstate formalism

 \Leftrightarrow One-mass insertion approximation

$$\delta_{LR,23} = m_{LR,23}^2 / \tilde{m}^2$$

Sfermion propagator can be expanded as a series in terms of δ , where \tilde{m}^2 is an average mass.

- Derive bounds switching on one specific off-diagonal element only
 - δ_{LR,23} (δ_{LR,32}) δ_{LL,23}

Systematic analysis of interference effects :

- Include all new-physics contributions (chargino, neutralino, charged Higgs, gluino)
- Stability of these separate bounds explored if all off-diagonal elements varied simultaneously.

• Various parameter scenarios:

- Higgs bound \leftrightarrow nontrivial stop mixing $X_t m_t = (m_{u,RL}^2)_{33} - \mu m_t \cot \beta$
- starting set: $\mu = 300 \, GeV$, $M_{SUSY} = 500 \, GeV$, $X_t = 750 \, GeV$, tan $\beta = 10$. $x = m_{\tilde{a}}^2 / M_{susy}^2 = 1$.
- (A) $M_{susy} = 300 \, GeV$, $X_t = 470 \, GeV$ (B) $M_{susy} = 500 \, GeV$, $X_t = 750 \, GeV$ (C) $M_{susy} = 1000 \, GeV$, $X_t = 1200 \, GeV$. - $x = m_{\tilde{q}}^2 / M_{susy}^2 = 0.3, 0.5, 1, 2.$

$$- tan\beta = 2, 10, 30, 50$$

 $L1 = \delta_{d,RL,23} + f(x)\delta_{d,RR,23} \times \delta_{d,RL,33} + f(x)\delta_{d,RL,22} \times \delta_{d,LL,23}$ $L2 = \delta_{d,LR,23} + f(x)\delta_{d,LR,22} \times \delta_{d,RR,23} + f(x)\delta_{d,LL,23} \times \delta_{d,LR,33}$

Gluino- and SM contribution all contributions

all δ_i varied

The combinations LC1 and LC2 stay stringently bounded over large parts of the supersymmetric parameter space, excluding the large $tan\beta$ and large μ regime (chargino contribution !).

Our new bounds are in general one order of magnitude weaker than the bound on the single off-diagonal element $\delta_{LR,23}$ derived by neglecting any kind of interference effects:

Compare with Masiero et al. '01: $\delta_{LR,23}$: 1.6 × 10⁻² (x = 1 and $M_{susy} = 500 \, GeV$)

Low energy constraints

- K-physics: ϵ'/ϵ , K^0 - \overline{K}^0 mixing, ... \Rightarrow neglect 1 - 2 and 1 - 3 mixing
- *B*-physics: $b \to s\gamma$, ΔM_{B_s} , ... most important beyond SM contributions: H^+ , $\tilde{\chi}_i^+$, \tilde{g}

In practice:

- For simplicity: real parameters only
- QCD corrections for $b \rightarrow s\gamma$ as given in Borzumati et al., Phys. Rev. D62, 075005 (2000) and Besmer et al., Nucl.Phys.B609:359 (2001)
- ΔM_{B_s} , as given in Baek et al., Phys. Rev. D64, 095001 (2001)

Correlations to Collider Physics Hurth, Porod hep-ph/0311075

• Squark decays:

$$egin{array}{rcl} ilde{u}_i & o & u_j ilde{\chi}_k^0 \,, \, d_j ilde{\chi}_l^+ \ ilde{d}_i & o & d_j ilde{\chi}_k^0 \,, \, u_j ilde{\chi}_l^- \end{array}$$

with i = 1, ..., 6, j = 1, 2, 3, k = 1, ..., 4 and l = 1, 2.

• These decays are governed by the same mixing matrices as the contributions to flavour violating low-energy *B* observables.

Strategy

• take SPS1a as starting point:

```
\begin{array}{l} M_0 = 100 \,\, {\rm GeV}, \,\, M_{1/2} = 250 \,\, {\rm GeV} \\ A_0 = -100 \,\, {\rm GeV}, \,\, {\rm tan} \,\beta = 10, \,\, \mu > 0 \\ \Rightarrow \\ M_2 = 192 \,\, {\rm GeV}, \,\, \mu = 351 \,\, {\rm GeV} \\ m_{H^+} = 403 \,\, {\rm GeV} \,\, m_{\tilde{g}} = 594 \,\, {\rm GeV}, \,\, m_{\tilde{t}_1} = 400 \,\, {\rm GeV} \\ m_{\tilde{t}_2} = 590 \,\, {\rm GeV}, \,\, m_{\tilde{q}_R} \simeq 550 \,\, {\rm GeV}, \,\, m_{\tilde{q}_L} \simeq 570 \,\, {\rm GeV} \\ ({\rm SPheno} \,\, 2.0) \end{array}
```

- vary off-diagonal squark mass entries.
- accept points with 2 \leq 10⁴ BR($b \rightarrow s \gamma) \leq$ 4.5 and $\Delta M_{B_s} \geq$ 14 $\rm ps^{-1}$

 \Rightarrow Typical results:

Branching ratios (in %) of u-type squarks

	$ ilde{\chi}_1^0 c$	${\tilde \chi}_1^0 t$	$ ilde{\chi}_2^0 c$	$\tilde{\chi}_2^0 t$	$ ilde{\chi}_3^0 c$	$\tilde{\chi}^0_{\rm 3} t$	$ ilde{\chi}_4^0 c$	${\tilde \chi}_4^0 t$	$\tilde{\chi}_1^+ s$	$\tilde{\chi}_1^+ b$	$\tilde{\chi}_2^+ s$	$\tilde{\chi}_2^+ b$
$ ilde{u}_1$	4.7	18	5.2	9.6	$6 imes 10^{-3}$	0	0.02	0	11.3	46.4	$2 imes 10^{-3}$	4.7
$ ilde{u}_2$.19.6	1.1	0.4	17.5	$2 imes 10^{-2}$	0	$6 imes 10^{-2}$	0	0.5	57.5	$3 imes10^{-3}$	2.9
$ ilde{u}_{3}$	7.3	3.7	20	1.4	$6 imes 10^{-2}$	0	0.6	0	40.3	3.1	1	18.5
$ ilde{u}_6$	5.7	0.4	11.1	5.3	$4 imes 10^{-2}$	5.7	0.6	13.2	22.9	13.1	0.6	8.0

Branching ratios (in %) of *d*-type squarks

	$ ilde{\chi}_1^0 s$	${ ilde \chi}_1^0 b$	$ ilde{\chi}_2^0 s$	${ ilde \chi}_2^0 b$	$ ilde{\chi}_3^0 s$	${ ilde \chi}_{ m 3}^{ m 0} b$	$ ilde{\chi}_4^0 s$	${ ilde \chi}_4^0 b$	$ ilde{\chi}_1^- b$	$\tilde{\chi}_1^- t$	$ ilde{\chi}_2^- b$	$\tilde{\chi}_2^- t$	${ ilde u_1}W^-$
$ ilde{d}_1$	1.2	5.7	8.4	30.6	$2 imes 10^{-2}$	1.5	0.2	0.9	16.6	34.1	0.6	0	0
$ ilde{d}_2$.17.4	5.8	5.1	15.7	$7 imes 10^{-2}$	7.4	0.3	09.2	9.7	19.7	0.7	0	8.8
$ ilde{d}_4$	14.7	21.7	11.3	2.2	$5 imes 10^{-2}$	10.6	0.5	8.4	22.1	3.6	1.2	0	3.4
$ ilde{d}_6$	1.7	0.5	20.5	6.9	0.1	0.9	1.2	1.3	40.3	10.2	3.4	11.1	1.8

Final state	BR [%]	Final state	BR [%]		
$ ilde{u}_1 c$	12.9	$ ilde{d}_1s$	7.2		
${ ilde u}_1 t$	5.7	$ ilde{d}_1 b$	19.8		
$ ilde{u}_2 c$	0.4	$ ilde{d}_2 s$	6.1		
$ ilde{u}_2 t$	7.6	$ ilde{d}_2 b$	4.7		
$ ilde{u}_{3}c$	0.6	$ ilde{d}_{3}d$	10.0		
$ ilde{u}_4 u$	5.5	$ ilde{d}_{ extsf{4}}s$	3.5		
$ ilde{u}_5 u$	3.0	$ ilde{d}_4 b$	4.9		
		$ ilde{d}_5 d$	2.1		

Gluino branching ratios larger than 1%.

- $b \rightarrow s\gamma$ and ΔM_{B_s} (still ?) allow for large mixings between second and third generation squarks, for example \tilde{t}_i , \tilde{c}_i can have large flavour violating decay modes,
- makes life at LHC potentially more interesting and more difficult,
- extra information from LC or flavour factories needed.