BSM mid-term report SUSY Projects

- Light stop model

Choudury, Galanti, Godbole, Guchait, Lari, Polesello, Schumacher, Zhukov

- tau polarization

Choudury, Godbole, Guchait, Heldmann, Mangeol

- Focus-point studies and model discrimination

Galanti, Lari, Zhukov

- CPV Higgs

Choudury, Godbole, Schumacher
People not on the list (did I forgot someone?) are encorauged to join. This also applies on people attending the second session and those not attending the workshp. Contact T. Lari (tommaso.lari@cern.ch) and see the BSM web page for details.

Light stop: parameter space scan

- MSSM (non-mSUGRA) model, discussed in
C. Balazs, M. Carena and C.E.M. Wagner, Phys. Rev. D70 015007
- Searched for a phenomenology
- Motivated by baryogenesis
- With relic density equal to Dark Matter abundance
- Consistent with LEP and Tevatron limits
- With heavy squark and sleptons, light stop, intermediate mass gluino
- Parameter space scanned. A few days to get everything right.
- Running stop mass scale in ISAJET is $\operatorname{sqrt}\left[m\left(t_{\mathrm{R}}\right) m\left(\mathrm{t}_{\mathrm{L}}\right)\right]$. Set to $m(Z)$ to use zero t_{R} mass.
- Different codes use different levels of precision (radiative corrections): the same soft SUSY parameters give different results. Used LO whenever possible, still few GeV differences between ISAJET (masses and decays, interface to HERW IG), MICROMEGAS+ISAJET (relic density), Guchait private code (4-body decay BRs).

Light stop: Selected Point

Scalar u d c st ${ }_{2}$	1200 GeV
sleptons	1000 GeV
gluino	Decays in $\mathrm{t} \tilde{\mathrm{t}}$
Heavy Higgs	
Charginos	174 and 300 GeV
Neutralinos	117 to 304 GeV
Light stop	142 GeV
Light Higgs	114 GeV

- Low Stop-LSP mass difference: difficult for Tevatron
- Stop pair production $O(100 \mathrm{pb})$:
$\mathfrak{t} \mathfrak{t} \rightarrow c c \chi \chi$ (impossible?) or $\mathfrak{t} \mathfrak{t} \rightarrow b b W^{*} W^{*} \chi \chi$ (easy?)
- Gluino pair production $\mathrm{O}(1 \mathrm{pb})$
$\mathrm{gg} \rightarrow \tilde{\mathrm{t}} \mathrm{tt} \rightarrow \mathrm{bbWWcc} \chi \chi$ or bbbb WW W*W* $\chi \chi$ or bbbcWWW* $\chi \chi$
- Squark pair (rare): mostly gluino pair plus two jets
- Charginos and neutralinos not in any decay chain - only direct production possible (difficult).

Light stop: status and plans

- Generated 5000 events with HERWIG and ATLAS fast simulation.

Observation of SUSY production and reconstruction of mass edges to be studied.

- CMS fast simulation production to be started. A number of people from CMS interested to study this point.
- Parameter scan: select other points? Dependence on parameters?
- Observation of 4-body decay at Tevatron?
- Volunteers willing to study the ATLAS or CMS ntuples?
- ...

tau polarization

The energy distribution of the π produced in the decays $\tau \rightarrow v \pi$ as well as those in $\tau \rightarrow \rho v, \tau \rightarrow \mathrm{a}_{1} \vee$ depends on the handedness of the τ and can be used to determine τ polarisation. General tool for physics at LHC.

SUSY application: net helicity of τ produced in decay $\tilde{\tau} \rightarrow \chi^{0} \tau$ depends on mixing of $\tilde{\tau}_{\mathrm{L}}$ and $\tilde{\tau}_{\mathrm{R}}$ and on gaugino content of χ^{0}.
mSUGRA: $\chi^{0}{ }_{1} \sim B$

- Small $\tan \beta, \cos \theta_{\tau}$ small $\rightarrow P_{\tau} \approx+1$
- Large $\tan \beta, \cos \theta_{\tau}$ large \rightarrow but still $\mathrm{P}_{\tau}>0.9$.

AMSB: $\chi^{0}{ }_{1} \sim$ Wino $\rightarrow \mathrm{P}_{\tau} \sim-1$
GMSB: if $\tilde{\tau}$ is NLSP, $\tilde{\tau} \rightarrow \tau$ G and $P_{\tau}=\sin ^{2} \theta_{\tau}-\cos ^{2} \theta_{\tau}$

- M. Guchait, D.P. Roy and R. Godbole, [arXiv:hep-ph/0411306].
- M. Guchait and D. P. Roy, Phys. Lett. B535(2002)243; B541(2002)356.
- S. Raychaudhuri and D. P. Roy, Phys. Rev. D52(1995)1556; D53(1996)4902;
D. P. Roy, Phys. Lett. B459(1999)607.
- S. Kraml, T. Gadosijk, R.G., JHEP 0409, 051 (2004)

τ polarization: how to measure

LHC CMS study 1:
see guchait.ps
LHC CMS study 2:
see next slides
LHC ATLAS study has started

τ polarization at LHC

- OS-SS distribution can be used to subtract background (2-tau invariant mass).

$\chi^{0}{ }_{2} \rightarrow \tilde{\tau} \tau \rightarrow \chi^{0}{ }_{1} \tau \tau$
- The τ from the two decays istribution can be discriminated with their transverse momentum if the two mass differences are very different.

τ polarization: status and plans

- First studies on the measurement of the polarization of τ with the CMS detector have started. First results promising, more work is needed to assess how well can we measure the polarization in SUSY events and constrain the underlying model.
- This study has started also on the ATLAS side.
- Other (SM and BSM) physics which can be studied with τ polarization?

FP Studies: Motivation

-Relic density WMAP constraints in mSUGRA -light neutralino are preferable for indirect and large m 0 by direct DM search (complimentarity)

FP studies: bulk vs focus-point

Focus point (gg production)

Focus point ($\chi \chi$ production)

Bulk region (qq or gg production)

Bulk region ($\chi \chi$ production)

2-body decays

FP studies: general idea

FP regions:
scalars are heavy
$\chi_{1}{ }^{ \pm} \chi_{2}{ }^{0} \chi_{1}{ }^{0}$ are light
only gluino and gaugino production)
3-body decays

Bulk and coannihilation regions
scalars are light (abundant squark
production and sleptons in decays)
2-body decays

Goal
Identify focus/bulk regions by topology - without assumptions on the mass spectrum of a specific point)

FP studies: 2 and 3-body decays

Neutralino decays

Parton level study of pure leptonic mode

 Assymetry of the pt in the tagged dilepton pairs

Focus Point: trileptons selections

2mu_me

CMS Full simulation.

Direct production of gaugino pairs observable if mass not too high

FP: status and plans

Large m_{0} region (msugra $m_{0}>1000, m_{1 / 2}<500$) compatible with the WMAP relic density constraints will be accessible at LHC via neutralino and gluino production.
The $\chi^{0}{ }_{n}, \chi^{ \pm}$have 3 body decays only in this region and can be selected by assymetry and MET (sumET) cuts.
Gluino also has 3 body decays only in this region.

Plans

Optimize model-independent topologycal selections to discriminate different regions of parameter space (and SUSY from SM).

Reconstruction of mass spectra in the FP .
Understand NLO SUSY cross sections.
Volunteers?

CPX-Scenario: Overall Discovery Potential with 300 fb $^{-1}$

ATLAS preliminary at SUSY04 hep-ph/0410112

\bigcirc
small uncovered area
$\mathrm{M}_{\mathrm{H} 1}$: $<70 \mathrm{GeV}$
$M_{\mathrm{H}_{2}}: 105$ to 120 GeV
$M_{\mathrm{H} 3}$: $\mathbf{1 4 0}$ to $\mathbf{1 8 0} \mathbf{~ G e V}$
small masses below 70 GeV not yet studied in ATLAS
channels at the border:
ttH ${ }_{2}, \mathrm{H}_{2} \rightarrow$ bb
VBF, $\mathbf{H}_{\mathbf{2}} \rightarrow \tau \tau$
$t t \rightarrow \mathbf{W b ~ H}+{ }^{+-} \mathbf{b}, \mathrm{H}^{+-} \rightarrow \tau \nu$

Maybe close hole via: $\mathrm{tt} \rightarrow \mathrm{bW} \mathrm{bH}^{+-}, \mathrm{H}^{+-}$
 $\rightarrow \mathrm{H}_{1} \mathrm{~W}, \mathrm{H}_{1} \rightarrow \mathrm{bb}$

First very preliminary look with ATLFAST

W decays considered: 1st $\mathbf{W} \rightarrow \mathbf{q q}+2$ 2nd $\mathbf{W} \rightarrow \mu \nu$

Background considered: ttbb (generated with ACERMC)

$$
\begin{aligned}
\sigma & =3.9 \mathrm{pb} \text { for } \mathrm{Q}_{\mathrm{QCD}}=s h a t \\
(\sigma & \left.=8.1 \mathrm{pb} \text { for } \mathrm{Q}_{\mathrm{QCD}}=\left(\mathrm{M}_{\mathrm{top}}+60 \mathrm{GeV}\right)\right)
\end{aligned}
$$

Signal:

	$M_{H+-}(\mathrm{GeV})$	$M_{H I}(\mathrm{GeV})$	$\tan \beta$	$\mathrm{Xsec}(\mathrm{fb})$
(1)	140	50	3.9	1302
(2)	160	40	2.8	525
(3)	130	30	4.3	1787

Signal Xsec includes all branching ratios Signal generated with PYTHIA

Primitive Selection

$\gg=1$ muon with pt $>20 \mathrm{GeV}$
$>=4$ b-tagged jets with pt>20 GeV (ideal b-tagging used)
$>=2$ non-b-tagged jets with pt $>20 \mathrm{GeV}$
$>$ reconstruct neutrinos P_{z} from M_{w} constraint (>0 solutions)
$>$ make list of light jet pairs with $\left|M_{J J}-M_{w}\right|<25 \mathrm{GeV}$
> reconstruction of top quarks:
find combination for $\mathrm{t} 1=\mathrm{blv}+\mathrm{t} 2=\mathrm{b} b \mathrm{bqq}$
or $\mathrm{t} 1=\mathrm{bqq}+\mathrm{t} 2=\mathrm{b} \mathrm{bbl}$
which minimises $\Delta=\left(m_{t}-m_{t 1}\right)^{2}+\left(m_{t}-m_{t 2}\right)^{2}$
$>$ require: $\left(m_{t}-m_{t 1}\right)<25 \mathrm{GeV}$ and $\left(\mathrm{m}_{\mathrm{t}}-\mathrm{m}_{\mathrm{t} 2}\right)<25 \mathrm{GeV}$

Reconstructed H1 Mass: 3 entries per

evt.
before cut on mtop

$$
\begin{aligned}
& \text { Eff }(\text { signal })=2.0 \% \\
& \text { Eff(ttbb BG) }=0.2 \%
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{MH1}=50 \mathrm{GeV} \\
& \mathrm{MH}+-=140 \mathrm{GeV} \\
& \mathrm{~L}=30 \mathrm{fb}^{-1}
\end{aligned}
$$

Reconstructed H+- Mass: 3 entries per

evt.

CPX Higgs: status and plans

- Analysis appears promising.
- Realistic b-tagging, add electrons, optimize cuts, other backgrounds...
- Can we cover the whole hole in discovery reach?

