BSM mid-term report SUSY Projects

Light stop model Choudury, Galanti, Godbole, Guchait, Lari, Polesello, Schumacher, Zhukov tau polarization Choudury, Godbole, Guchait, Heldmann, Mangeol Focus-point studies and model discrimination Galanti, Lari, Zhukov CPV Higgs Choudury, Godbole, Schumacher

People not on the list (did I forgot someone?) are encorauged to join. This also applies on people attending the second session and those not attending the workshp. Contact T. Lari (tommaso.lari@cern.ch) and see the BSM web page for details.

Light stop: parameter space scan

- MSSM (non-mSUGRA) model, discussed in
- C. Balazs, M. Carena and C.E.M. Wagner, Phys. Rev. D70 015007
- Searched for a phenomenology
 - Motivated by baryogenesis
 - With relic density equal to Dark Matter abundance
 - Consistent with LEP and Tevatron limits
 - With heavy squark and sleptons, light stop, intermediate mass gluino
- Parameter space scanned. A few days to get everything right.
 - Running stop mass scale in ISAJET is $sqrt[m(t_R)m(t_L)]$. Set to m(Z) to use zero t_R mass.
 - Different codes use different levels of precision (radiative corrections): the same soft SUSY parameters give different results. Used LO whenever possible, still few GeV differences between ISAJET (masses and decays, interface to HERW IG), MICROMEGAS+ISAJET (relic density), Guchait private code (4-body decay BRs).

Light stop: Selected Point

Scalar u d c s t ₂	1200 GeV	
sleptons	1000 GeV	
gluino	800 GeV	Decays in t \tilde{t}
Heavy Higgs	350 GeV	
Charginos	174 and 300 GeV	
Neutralinos	117 to 304 GeV	
Light stop	142 GeV	Decays in $\chi_{1}^{0}c$ (30%) and $\chi_{1}^{0}bW^{*}$ (70%)
Light Higgs	114 GeV	

- Low Stop-LSP mass difference: difficult for Tevatron
- <u>Stop pair production</u> O(100 pb):
- $\mathfrak{T} \to \operatorname{cc} \chi \chi$ (impossible?) or $\mathfrak{T} \to \operatorname{bbW}^* W^* \chi \chi$ (easy?)
- <u>Gluino pair production</u> O(1 pb)
- $gg \rightarrow \tilde{t} \, \tilde{t} \, tt \rightarrow bbWWcc\chi\chi$ or $bbbb WW W^*W^*\chi\chi$ or $bbbcWWW^*\chi\chi$
- <u>Squark pair</u> (rare): mostly gluino pair plus two jets
- Charginos and neutralinos not in any decay chain only direct production possible (difficult).

Light stop: status and plans

- Generated 5000 events with HERWIG and ATLAS fast simulation.
 Observation of SUSY production and reconstruction of mass edges to be studied.
- CMS fast simulation production to be started. A number of people from CMS interested to study this point.

- Parameter scan: select other points? Dependence on parameters?
- Observation of 4-body decay at Tevatron?
- Volunteers willing to study the ATLAS or CMS ntuples?
- ...

tau polarization

The energy distribution of the π produced in the decays $\tau \rightarrow \nu \pi$ as well as those in $\tau \rightarrow \rho \nu$, $\tau \rightarrow a_1 \nu$ depends on the handedness of the τ and can be used to determine τ polarisation. General tool for physics at LHC.

<u>SUSY application</u>: net helicity of τ produced in decay $\tilde{\tau} \to \chi^0 \tau$ depends on mixing of $\tilde{\tau}_L$ and $\tilde{\tau}_R$ and on gaugino content of χ^0 .

mSUGRA: $\chi_{1}^{0} \sim B$ • Small tan β , $\cos \theta_{\tau}$ small $\rightarrow P_{\tau} \approx +1$ • Large tan β , $\cos \theta_{\tau}$ large \rightarrow but still $P_{\tau} > 0.9$. **AMSB**: $\chi_{1}^{0} \sim \text{Wino} \rightarrow P_{\tau} \sim -1$ **GMSB**: if τ is NLSP, $\tau \rightarrow \tau$ G and $P_{\tau} = \sin^{2} \theta_{\tau} - \cos^{2} \theta_{\tau}$

- M. Guchait, D.P. Roy and R. Godbole, [arXiv:hep-ph/0411306].
- M. Guchait and D. P. Roy, Phys. Lett. B535(2002)243; B541(2002)356.
- S. Raychaudhuri and D. P. Roy, Phys. Rev. D52(1995)1556; D53(1996)4902;
 D. P. Roy, Phys. Lett. B459(1999)607.
- S. Kraml, T. Gadosijk, R.G., JHEP 0409, 051 (2004)

τ polarization: how to measure

τ polarization at LHC

• OS-SS distribution can be used to subtract background (2-tau invariant mass).

$$\chi^0_2 \rightarrow \widetilde{\tau} \ \tau \rightarrow \chi^0_1 \ \tau \tau$$

The τ from the two decays istribution can be discriminated with their transverse momentum if the two mass differences are very different.

τ polarization: status and plans

- First studies on the measurement of the polarization of τ with the CMS detector have started. First results promising, more work is needed to assess how well can we measure the polarization in SUSY events and constrain the underlying model.
- This study has started also on the ATLAS side.
- Other (SM and BSM) physics which can be studied with τ polarization?

FP Studies: Motivation

-Relic density WMAP constraints in mSUGRA -light neutralino are preferable for indirect and large m0 by direct DM search (complimentarity)

FP studies: bulk vs focus-point

2-body decays

FP studies: general idea

FP regions:

scalars are heavy $\chi_1^{\pm}\chi_2^{o}\chi_1^{o}$ are light only gluino and gaugino production) 3-body decays

Bulk and coannihilation regions

scalars are light (abundant squark production and sleptons in decays) 2-body decays

Goal

Identify focus/bulk regions by topology - without assumptions on the mass spectrum of a specific point)

FP studies: 2 and 3-body decays

Neutralino decays

Parton level study of pure leptonic mode

Assymetry of the pt in the tagged dilepton pairs

Focus Point: trileptons selections

FP: status and plans

Large m_0 region (msugra $m_0 > 1000$, $m_{1/2} < 500$) compatible with the WMAP relic density constraints will be accessible at LHC via neutralino and gluino production.

The χ_n^o , χ_n^{\pm} have 3 body decays only in this region and can be selected by assymetry and MET (sumET) cuts.

Gluino also has 3 body decays only in this region.

Plans

Optimize model-independent topologycal selections to discriminate different regions of parameter space (and SUSY from SM).

Reconstruction of mass spectra in the FP.

Understand NLO SUSY cross sections.

Volunteers?

CPX-Scenario: Overall Discovery Potential with 300 fb⁻¹

ATLAS preliminary at SUSY04 hep-ph/0410112

Maybe close hole via: $tt \rightarrow bW bH^{+-}, H^{+-} \rightarrow H_1W, H_1 \rightarrow bb$

First very preliminary look with ATLFAST

W decays considered: 1st W \rightarrow qq + 2nd W \rightarrow $\mu\nu$

Background considered: ttbb (generated with ACERMC)

 σ = 3.9 pb for Q_{QCD}=shat

(σ = 8.1 pb for Q_{QCD}=(M_{top}+60GeV))

Signal:		$M_{H^{+-}}(GeV)$	M _{H1} (GeV)	taneta	Xsec (fb)
	(1)	140	50	3.9	1302
	(2)	160	40	2.8	525
	(3)	130	30	4.3	1787

Signal Xsec includes all branching ratios

Signal generated with PYTHIA

Primitive Selection

- > >= 1 muon with pt > 20 GeV
 - >= 4 b-tagged jets with pt>20 GeV (ideal b-tagging used)
 - >= 2 non-b-tagged jets with pt>20GeV

reconstruct neutrinos P_Z from M_w constraint (>0 solutions)
 make list of light jet pairs with $|M_{11}-M_w| < 25$ GeV

 reconstruction of top quarks: find combination for t1 = b lv + t2 = b bb qq or t1 = b qq + t2 = b bb lv
 which minimises ∆=(m_t-m_{t1})² + (m_t-m_{t2})²
 require: (m_t-m_{t1}) < 25 GeV and (m_t-m_{t2}) < 25GeV

Reconstructed H1 Mass: 3 entries per evt.

before cut on mtop

Reconstructed H+- Mass: 3 entries per evt.

CPX Higgs: status and plans

- Analysis appears promising.
- Realistic b-tagging, add electrons, optimize cuts, other backgrounds...
- Can we cover the whole hole in discovery reach?