Distinguishing between MSSM and NMSSM by combined LHC and ILC analyses

> Stefan Hesselbach High Energy Physics, Uppsala University

> > based on

G. Moortgat-Pick, S. Hesselbach, F. Franke, H. Fraas, hep-ph/0502036

Les Houches 2005

May 2005

Introduction

- NMSSM: MSSM + singlet/singlino
 In superpotential: $\mu \hat{H}_1 \hat{H}_2 \rightarrow \lambda \hat{H}_1 \hat{H}_2 \hat{S} + \frac{\kappa}{3} \hat{S}^3 \Rightarrow \mu \rightarrow \lambda x$, $x \equiv \langle S \rangle$
- Extended neutralino and Higgs sectors
- Distinguishing NMSSM ↔ MSSM
 - Higgs sector: light singlet scalar or pseudoscalar Higgs
 - Neutralino sector: singlino LSP → displaced vertices [Ellwanger, Hugonie, '97, '98; Hesselbach, Franke, Fraas, '00; Franke, Hesselbach, '01]
- Here we assume
 - Higgs sector allows no distinguishing only MSSM-like lightest Higgs accessible
 - Masses and cross sections of neutralinos/charginos consistent with MSSM

Higgs sector

- 3 scalar and 2 pseudoscalar Higgs bosons
- Light singlet dominated Higgs \rightarrow hint for NMSSM
 - Light scalar Higgs in LHC/ILC analyses
 - $S_2 \rightarrow S_1 S_1 \ (S_1 \rightarrow P_1 P_1)$ for light scalars (pseudoscalars)

[Ellwanger, Gunion, Hugonie, Moretti '03]

[Gunion, Szleper, '04]

[Miller, Moretti '04]

[Ellwanger, Gunion, Hugonie, '05]

However, in large parameter region:

 S_1 MSSM-like, singlet dominated Higgs heavy e.g. m_{S_1} = 124 GeV, m_{S_2} = 311 GeV, m_{P_1} = 335 GeV for A_{λ} = 4 TeV, A_{κ} = 300 GeV in our scenario

Scenario

MMSSM scenario

 $M_1 = 360 \text{ GeV}, M_2 = 147 \text{ GeV}, \tan \beta = 10,$

$$x = 915 \text{ GeV}, \lambda = 0.5, \kappa = 0.2$$

Neutralino masses and mixing

	$m_{\tilde{\chi}_i^0}/{ m GeV}$	mixing character in % {gaugino, higgsino, singlino}
$ ilde{\chi}_1^0$	138	{ <mark>94.7</mark> , 4.7, 0.5}
${ ilde \chi}^{f 0}_{f 2}$	337	{ <mark>41.1</mark> , 16.1, <mark>42.9</mark> }
$ ilde{\chi}_{3}^{0}$	367	{ <mark>56.6</mark> , 1.4, <mark>42.0</mark> }
$ ilde{\chi}_{ extsf{4}}^{ extsf{0}}$	468	{0.8, <mark>98.6</mark> , 0.6}
$ ilde{\chi}_5^0$	499	{6.8, <mark>79.2</mark> , 14.0}

Cross sections and errors

- Cross sections at ILC
- Error estimation:
 - Statistical error for $\int \mathcal{L} = 100 \text{ fb}^{-1}$
 - Polarization uncertainty $\Delta \mathcal{P}_{e^{\pm}}/\mathcal{P}_{e^{\pm}} = 0.5\%$
 - Mass uncertainties: 1.5%: $\tilde{\chi}_{2,3}^{0}$, $\tilde{e}_{L,R}$, $\tilde{\nu}$ 2%: $\tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{\pm}$

 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp})$ /fb at \sqrt{s} = 400 GeV **Unpolarized beams** 323.9 ± 33.5 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (-90\%, +60\%)$ 984.0 ± 101.6 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (+90\%, -60\%)$ 13.6 ± 1.6 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp})$ /fb at \sqrt{s} = 500 GeV **Unpolarized beams** 287.5 ± 16.5 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (-90\%, +60\%)$ 873.9 ± 50.1 $(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = (+90\%, -60\%)$ 11.7 ± 1.2 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ /fb at $\sqrt{s} = 500 \text{ GeV}$ Unpolarized beams 4.0 ± 1.2 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (-90\%, +60\%)$ 12.1 ± 3.8 $(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = (+90\%, -60\%)$ 0.2 ± 0.1

Strategy

- Take "measured" masses and cross sections with errors
- Determine MSSM parameters with strategy of

[Choi, Djouadi, Dreiner, Kalinowski, Zerwas, '98] [Choi, Djouadi, Guchait, Kalinowski, Song, Zerwas, '00] [Choi, Kalinowski, Moortgat-Pick, Zerwas, '01, '02]

- $m_{\tilde{\chi}_1^{\pm}}$, $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 400$ and 500 GeV ⇒ chargino mixing matrix elements U_{11} , V_{11}
- $U_{11}, V_{11}, m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0} \text{ and } \sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ $\Rightarrow \text{ constraints for } M_1, M_2, \mu, \tan \beta$
- Calculate masses and mixings of heavier neutralinos and charginos and compare with LHC analyses [Desch, Kalinowski, Moortgat-Pick, Nojiri, Polesello, '03]

[Allanach et al., Les Houches 2003]

[Moortgat-Pick, '04]

Parameter determination at ILC

2 steps:

(I) Chargino sector

Input:
$$m_{\tilde{\chi}_{1}^{\pm}}$$
, $\sigma(e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-})$ at $\sqrt{s} = 400$ and 500 GeV
 $\Rightarrow U_{11}^{2} = [0.84, 1.0], V_{11}^{2} = [0.83, 1.0]$

(II) Add neutralino sector

Input:
$$U_{11}, V_{11}, m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}$$
 and $\sigma(e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0})$
 $M_{1} = (377 \pm 42) \text{ GeV}$
 $M_{2} = (150 \pm 20) \text{ GeV}$
 $\mu = (450 \pm 100) \text{ GeV}$
 $\tan \beta = [1, 30]$

Parameter determination at ILC

- "Measured" masses cross sections compatible with MSSM
- Predictions for masses and mixings of heavier particles:

$$\begin{split} m_{\tilde{\chi}^0_3} &= [352, 555] \; \text{GeV} \\ m_{\tilde{\chi}^0_4} &= [386, 573] \; \text{GeV} \\ m_{\tilde{\chi}^\pm_2} &= [450, 600] \; \text{GeV} \end{split}$$

SUSY searches at LHC

Cascade decays of quarks and gluinos

→ Masses of heavy gauginos accessible in invariant mass distributions

In our NMSSM scenario: $\tilde{\chi}_3^0$ has large gaugino component For simulations in mAMSB-like scenarios see e.g. [Barr, Lester, Parker, Allanach, Richardson, JHEP 0303, 045]

$$ightarrow BR(ilde{\chi}^{0}_{3}
ightarrow ilde{\ell}^{\pm}_{L,R}\ell^{\mp})\sim 45\%$$

 \Rightarrow expected to see edges for $\tilde{\chi}_3^0 \rightarrow \tilde{\ell}_{L,R}^{\pm} \ell^{\mp}$

- With input from ILC measurements: $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}}, m_{\tilde{\nu}}$
 - \rightarrow Precision of 2% for $m_{\tilde{\chi}^0_3}$ may be possible:

$$m_{ ilde{\chi}^0_3}$$
 = (367 \pm 7) GeV

- → Mass value compatible with predictions in MSSM, however, not with predictions for gaugino component
- Interpretation of measured gaugino as $\tilde{\chi}_4^0$:
 incompatible with cross section measurements at ILC

The ILC^{$\mathcal{L}=1/3$} option

- Inconsistency of LHC and ILC analyses may motivate low-luminosity but higher-energy option $ILC_{650}^{\mathcal{L}=1/3}$
- ILC₆₅₀ $\mathcal{L}^{=1/3}$: $\sqrt{s} = 650$ GeV for $\mathcal{L}/3$ without hardware changes
- $\begin{aligned} & \, \, \tilde{\chi}_3^0, \, \tilde{\chi}_4^0, \, \tilde{\chi}_2^\pm \text{ accessible via} \\ & \, \sigma(e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_3^0), \, \sigma(e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_4^0), \, \sigma(e^+e^- \to \tilde{\chi}_1^\pm \tilde{\chi}_2^\mp) \end{aligned}$
- Precisely measured masses $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_2^0}$, $m_{\tilde{\chi}_3^0}$, $m_{\tilde{\chi}_4^0}$, $m_{\tilde{\chi}_1^{\pm}}$, $m_{\tilde{\chi}_2^{\pm}}$ and cross sections
 - → observables for fit of NMSSM parameters

 M_1 , M_2 , tan β , λ , $\mu_{\text{eff}} = \lambda x$, κx

Conclusion

- NMSSM scenario that cannot be distinguished from MSSM at ILC with $\sqrt{s} = 500 \text{ GeV}$
- Masses and cross sections of accessible neutralinos/charginos compatible with MSSM
- Combined LHC+ILC analyses: show inconsistency with MSSM
- $ILC_{650}^{\mathcal{L}=1/3}$ could lead to clear identification of NMSSM