

Advanced Computing Technology Overview

Richard P. Mount

Director: Scientific Computing and Computing Services Stanford Linear Accelerator Center May 25, 2005

Advanced Computing Technology My Viewpoint

- Decades of computing for experimental HEP;
- Decades of data-intensive computing;
- Belief that the future will be even more data-intensive for HEP;
- Belief that the many other sciences are also facing a data-intensive future.

My History

- Circa 1980
 - The EMC experiment
 - World's largest collaboration (99 physicists)
 - 10,000 tapes/year
 - No advance planning for computing resources
 - I had to invent a data-handling system to be able to do physics
- 1982 1997
 - The L3 experiment at LEP
 - Responsible for L3 computing at CERN
- 1997 now
 - BaBar at SLAC
 - Future HEP, Particle-astro and X-ray science at SLAC/Stanford

What about the future?

- CPU
 - The clock-speed ramp up has run out of steam
 - Intel/AMD response: multicore chips
 - Fairly easy to use for HEP data processing
 - Intel predicts 25 Tflops/chip in 2015 (100 cores)
 - Close to the "doubling every 1.2 year" extrapolation (costs are very dependent on memory)
- Disk
 - "increasing requirements for disk drive improvements provides a unending challenge to extend GMR technology to its limits, and then to look beyond" (Hitachi GST)
 - It seems to be working no end to *capacity* growth is in sight yet.

Generic HEP Computing Fabric

- While CPU power per \$ has been doubling every 1.2 years, Watts per \$ have been increasing too.
 - Infrastructure (power, cooling, space) now costs as much per year as the computers
- Boxes per \$ are also increasing
 - 10,000 100,000 box systems are in sight
 - Scalability is vital
 - Fault tolerance is a requirement
- The raised-floor switched network (= system backplane) is a potential bottleneck
 - But if you have a few times \$10M then a Cisco CSR-1 can provide about 10,000 non blocking 10Gbit Ethernet ports on a single switch fabric.

Magnetic Hard Disk Drive Internal Data Rate

Ed Grochowski: Hitachi Global Storage Technologies

Ed Grochowski: Hitachi Global Storage Technologies

- Giora Tarnopolski (TarnoTek)
 - "I do not believe that there will be much shorter access times in the future"
- Ed Grochowski (Hitachi GST)
 - "While rotation rates beyond 15K are possible in the future, these will likely occur at longer product time intervals"
- BaBar reality:
 - Micro DST events are replicated about tenfold on disk
 - Millions of \$\$\$ per year, and many months of delay, are spent on data reorganization to allow efficient access by thousands of concurrent jobs

Technology Issues in Data Access

- Latency
- Speed/Bandwidth
- (Cost)
- (Reliabilty)

Random-Access Storage Performance

Death to Disks

- 10⁵ latency gap with respect to memory will be intolerable, eventually even in consumer applications;
- Storage-class memory is in development (see Jai Menon's talk at CHEP 2004);
- In the meantime we can use DRAM or even Flash memory in latency-critical or throughput-critical applications;
- For example, May 23, 2005 news item:
 - "Samsung develops flash-based 'disk' for PCs"
 - "It uses memory chips instead of a mechanical recording system"
 - <u>http://www.computerworld.com/hardwaretopics/storage/story/0,10801,1</u> 01946,00.html?source=NLT_AM&nid=101946
- Market forces are not yet aligned with scientific needs for massive, random access storage-class memory.

Storage-Class Memory Architecture: SLAC Strategy (PetaCache)

- There is significant commercial interest in architectures including massive data-cache memory
- **But**: from interest to delivery will take 3-4 years
- And: applications will take time to adapt not just codes, but their whole approach to computing, to exploit the new random-access architecture
- Hence: two phases
 - 1. Development phase (years 1,2,3)
 - Commodity hardware taken to its limits
 - BaBar as principal user, adapting existing data-access software to exploit the configuration
 - BaBar/SLAC contribution to hardware and manpower
 - Publicize results
 - Encourage other users
 - Begin collaboration with industry to design the leadership-class machine
 - 2. Operational Facility (years 3,4,5)
 - New architecture
 - Strong industrial collaboration
 - Wide applicability

Development Machine Deployment – Currently Funded

Development Machine Deployment – Possible Next Step

Scalable Object-Serving Software Example

- Xrootd (Andy Hanushevsky/SLAC)
 - Optimized for read-only access
 - Contributes ~29 microseconds to server latency
 - Make 1000s of servers transparent to user code
 - Load balancing
 - Automatic staging from tape
 - Failure recovery
- Can allow BaBar to start getting benefit from a new data-access architecture within months without changes to user code
- Minimizes impact of hundreds of separate address spaces in the data-cache memory

Summary

- Moore's Law (at least the generalized version) is alive and well for CPU throughput and disk capacity;
- Moore's Law seems dead for single-threaded CPU power;
- Moore's Law never applied to random-access to data;
- At constant cost, computing is getting hotter!
- Disks are now playing the same role in HEP that tapes were in 1990 (i.e. they are not random-access devices);
- Prepare for a random-access future;
- Prepare for a 10,000 to 100,000 box future;
- Scalability and fault tolerance are the challenges we must address.