

STAR Computing

Doug Olson for: Jérôme Lauret

STAR experiment ...

. The Solenoidal Tracker At RHIC

- <u>http://www.star.bnl.gov/</u> is an experiment located at the Brookhaven National Laboratory (BNL), USA
- A collaboration of 586 people wide, spanning over 12 countries for a total of 52 institutions
- A Pbytes scale experiment overall (raw+reconstructed) with several Million of files

3

The Physics ...

. A multi-purpose detector system

- For Heavy Ion (Au+Au, Cu+Cu, d+Au, ...)
- For Spin program p+p

Jérôme Lauret – STAR – ICFA Workshop – Daegu/Korea May 2005

100 µs

200 µs

400 µs

Zhangbu Xu, DNP2004

Carl Gagliardi, Hard Probes 2004

Data Acquisition Prediction

150 MB/sec

• 60% Live, 3-4 months running => 1+ PB of data / run

Possible rates x10 by 2008+

- x2 net output requested, the rest will be trigger
- Is needed to satisfy the Physics program …
- But pose some challenges ahead (RHIC-II era)

. Raw Data Size

STAR

- <> ~ 2-3 MB/event All on Mass Storage (HPSS as MSS)
- Needed only for calibration, production Not centrally or otherwise stored

. Real Data size

- Data Summary Tape+QA histos+Tags+run information and summary: <> ~ 2-3 MB/event
- Micro-DST: 200-300 KB/event

. Total Year4

Total num events	138260234
GB total	357369,72
TB total	348,99
MuDst	34,9

Data analysis

. Offline

- A single framework (root4star) for
 - Simulation
 - Data mining
 - User analysis

. Real-Data Production

- . Follows a Tier0 model
- Redistribution of MuDST to Tier1 sites

. Simulation production

• On the Grid ...

STAR

9

1

Data Sets sizes Tier0 Projections

2003/2004 data

Experiment	Raw (TB)	Pass1 (TB)	# events (M)	#of files
PHENIX	250	800	2000	160000
STAR	200	400	215	399000
PHOBOS	36	72	360	36000

RHIC Total Tape Required

CPU need projections

An evolution and projections for the next 10 years (tier0)

- . All hardware becomes obsolete
 - Includes a 1/4 replacement

How long?

Trig g e r	Total m onth	Remains	FF (* DF)
production62GeV	128,06	19,11	0,49
рр	10,33	0,84	0,04
рр M in B ia s	13,76	0	0,05
P roduction P P	74,91	1,41	0,28
P roduction P P no Barrel	8,29	0,51	0,03
Production P P n o E n d c a p	1,53	0	0,01
P roduction C entral	18,42	17,09	0,07
P roduction H a lf H ig h	23,52	1,38	0,09
ProductionHalfLow	161,75	2,52	0,61
p rod u c t i o n M i n B i a s H T	0,55	0,55	0,00
Production M in Bias	395,24	69,63	1,50
P roduction H ig h	267,50	246,15	1,02
ProductionLow	1362,49	1306,73	5,17
Production M id	328,13	317,49	1,25

Year scale production cycles This is "new" since Year4 for RHIC experiments accustom to fast production turn around ... NON-STOP data production and data acquisition

STAR

13

Needs & Principles

Cataloguing important

- Must be integrated with framework and tools
- Catalogue MUST be
 - . The central connection to datasets for users
 - Moving model from PFN to LFN to DataSets, cultural issue at first
- STAR has a (federated) Catalog of its own brew...

. Production cycles are long

- Does not leave room for mistakes
- Planning, phase, convergence
- Data MUST be available ASAP to Tier1/Tier2 sites

Access to data cannot be random but optimized at ALL levels

- Access to MSS is a nightmare when un-coordinated
 - Is access to "named" PFN still an option ?
 - Need for a data-access coordinator, SRM (??)

Data distribution

As immediately accessible as possible

. Tier0 production

- ALL EVENT files get copied on MSS (HPSS) at the end of a production job
- Strategy implies dataset IMMEDIATE replication
 - As soon as a file is registered, it becomes available for "distribution"
 - . 2 Levels of data distributions Local and Global

. Local

- All analysis files (MuDST) are on disks
- Ideally: One copy on centralized storage (NFS), one in MSS (HPSS)
- Practically: Storage do not allow to have all files "live" on NFS
 - Notions of distributed disk Cost effective solution

. Global

Tier1 (LBNL) -- Tier2 sites ("private" resources for now)

local/global relation through SE/MSS strategy needs to be consistent **Grid STARTS from your backyard on ...**

STAR Distributed disks SE attached to specific CE at a site

Distributed disks, possible model?

XROOTD

- load balancing + scalability
- a way to avoid LFN/PFN translation (Xrootd dynamically discovers PFN based on LFN to PFN mapping) ...

HPSS Data Disk HPSS Movers Disk

Coordinated access to SE/MSS STILL needed - "A" coordinator would cement access consistency by providing policies, control, ...

Could it be DataMover/SRM ???

Seeking to replace this with XROOTD/SRM

Data transfer Off-site in STAR - SDM Data-Mover

. STAR started with

- A Tier-0 site all "raw" files are transformed into pass1 (DST), pass2 (MuDST) files
- Tier-1 site Receives all pass2 files, some "raw" and some pass1 files
- . STAR is working on replicating this to other

STAR

19

Experience with -SRM/HRM/RRS

. Extremely reliable

STAR

- . Ronko's rotisserie feature "Set it, and forget it !"
- Several 10k files transferred, multiple TB for days, no losses
- Project was (IS) extremely useful, production usage in STAR
- Data availability at remote site as it is produced
 - We need this NOW (resource constrained => distributed analysis and best use of both sites)
 - Faster analysis yield to better science sooner
 - . Data safety
- Since RRS (prototype in use ~ 1 year)
 - 250k files, 25 TB transferred AND Cataloged
 - 100% reliability
 - Project deliverables on-time

Note on Grid

• For STAR, Grid computing is EVERY DAY Production used

- Data transfer using SRM, RRS, ..
- We run *simulation* production on the Grid (easy)
- Resource reserved for DATA production (still done traditionally)
 - No real téchnical difficulties
 - Mostly fears related to un-coordinated access and massive transfers
- Did not "dare" to touch user analysis
 - Chaotic in nature, requires more solid SE, accounting, quota, privilege, etc ...

More on Grid

SUMS

The STAR Unified Meta-Scheduler, A front end around evolving technologies for user analysis and data production

GridCollector

a framework addition for transparent access of event collection

Meta – Using the simplest to define the most complex

 $\mathbf{23}$

SUMS (basics)

STAR Unified Meta-Scheduler

- . Gateway to user batch-mode analysis
- . User writes an abstract job description
- Scheduler submits where files are, where CPU is, ...
- Collects usage statistics
- User DO NOT need to know about the RMS layer

Dispatcher and Policy engines

- DataSet driven Full catalog implementation & Grid-aware
- Used to run simulation on grid (RRS on the way)
 - . Seamless transition of users to Grid when stability satisfactory
- Throttles IO resources, avoid contentions, optimizes on CPU
- Most advanced features include: self-adapt to site condition changes using ML modules

Makes heavy use of ML

Meta – Using the simplest to define the most complex

SUMS input

Job description

test.xml

From U-JDL to RDL

- SUMS: a way to unify diverse RMS
- An abstract way to describe jobs as input
 - Datasets, file lists or event
 - catalogues lead to job splitting
 - A request is defined as a set or series of "operations"

?xml version="1.0" encoding="utf-8" ?>
<job maxFilesPerProcess="500"> /star/data09/reco/productionCentral/FullF /star/data09/reco/productionCentral/FullE data09/reco/productionCentral <command>root4star -q -b rootMacros/numberOfEventsList.C\ /star/data09/reco/productionCentral /star/data09/reco/productionCentra (\"\$FILELIST\"\)</command> /star/data09/reco/productionCentra <stdout /star/data09/reco/productionCentra URL="file:/star/u/xxx/scheduler/out/\$JOBID.out" star/data09/reco/productionC /star/data09/reco/productionCentra /star/data09/reco/productionCentral/FullFie /star/data09/reco/productionCentral/FullFie /star/data09/reco/productionCentral/FullFi URL="catalog:star.bnl.gov?production=P02gd,fil /star/data09/reco/productionCentral/FullFie /star/data09/reco/productionCentral/FullFie <output fromScratch="*.root" toURL="file:/star/u/xxx/scheduler/out/"

Query/Wildcard

resolution

/star/data09/reco/productionCentral/FullFie /star/data09/reco/productionCentral/FullFie /star/data09/reco/productionCentral/FullFie

/star/data09/reco/productionCentral/FullF /star/data09/reco/productionCentral/FullF /star/data09/reco/productionCentral/FullF

sched1043250413862_0.list / .csh /star/data09/reco/productionCentral/FullFie... /star/data09/reco/productionCentral/FullFie... /star/data09/reco/productionCentral/FullFie... /star/data09/reco/productionCentral/FullFie... /star/data09/reco/productionCentral/FullFie... /star/data09/reco/productionCentral/FullFie...

sched1043250413862 1.list / .csh /star/data0/reco/productionCentral/FullFie_ /star/data0/reco/productionCentral/FullFie_ /star/data0/reco/productionCentral/FullFie_ /star/data0/reco/productionCentral/FullFie_ /star/data0/reco/productionCentral/FullFie_ /star/data0/reco/productionCentral/FullFie_ /star/data0/reco/productionCentral/FullFie_

a09/reco/productionCentr

A dataset could be subdivided in N operations

User Input ... () ... Policy dispatcher

Extending proof of principle U-JDL to a feature reach Request Description Language (RDL)

- SBIR Phase I submitted to Phase II
- Supports workflow, multi-job, ...
- Allows multiple datasets
- •

24

SUMS future

. Multiple scheduler

- Will replace with submission WS
- Could replace with other Meta-Scheduler (MOAB, ...)

	Client - Ver 1.0		
Request / Job	Run Time	State	
🔒 jlauret			
darkhipkin			
P Ibhajdu			
MyMetaRequest1			
	00:00:00	Undispatched	
ODC4D2AD2AB364A04D2AD2AB3BFE	00:00:00	Undispatched	
✓ 5260DC4D2AD2AB364A00DC4D2AD7	00:35:29	Running	
F260DC4D2AD2AB364A00DC4D2AD7_0	00:07:54	Running	
F260DC4D2AD2AB364A00DC4D2AD7_1	00:15:32	Running	
F260DC4D2AD2AB364A00DC4D2AD7_2	00:34:12	Done	
error	Failed to loa	d MyEventMaker.c, the file VBruntime32.dll could not b	e found
warn	Memory is g	etting low, writting event 1223422A - 28769863A to file	e to save
AD2AB364A00DC4A0AD7C4D64A00DC98	04:12:45	Done	
	00:00:00	Undispatched	
E873890F983A93762EE3874A8484CC47	00:00:00	Undispatched	
	00:00:00	Undispatched	
	00:00:00	Undispatched	
EE3874F983A0F983A9397C40C0DC9839	00:00:00	Undispatched	

Job control and GUI

JobInitializer

XML Request

Mature enough (3 years) for spend time on GUI interface "appealing" application for any environment, easy(ier) to use

GridCollector

"Using an Event Catalog to Speed up User Analysis in Distributed Environment"

"tags" (bitmap index) based

- need to be define a-priori [production]
- Current version mix production tags AND FileCatalog information (derived from event tags)

GridCollector

- Usage in STAR
 - Rest on now well tested and robust SRM (DRM+HRM) deployed in STAR anyhow
 - Immediate Access and managed SE
 - Files moved transparaentely by delegation to SRM service
 - Easier to maintain, prospects are enormous
 - "Smart" IO-related improvements and home-made formats no faster than using GridCollector (a priori)
 - Physicists could get back to physics
 - And STAR technical personnel better off supporting GC

• It is a WORKING prototype of Grid interactive analysis framework

Network needs in future

MB/sec

• Grid is a production reality

STAR

28

- To support it, the projections are as 700.00follow
 650.00
 600.00
- How does this picture looks like for user jobs support ??

Philosophy versus practical

- If network allows, send jobs to ANY CE and move data ...
 - Minor issue of finding the "closest" available data, advanced reservation, etc ...
- If bandwidth do not allow, continue with placement ASAP ...as we do now ... and move jobs where files are (long lifetime data placement, re-use)

Network needs projections

Moving from "dedicated" resources to "On Demand" → OpenScienceGrid

- . Have been using grid tools in production at sites with STAR software pre-installed.
 - Success rate was 100% when Grid infrastructure was "up"
 - Only recommend to be careful with coordination local/global SE
 - Moving forward ...
- . The two features to be achieved in the transition to OSG are
 - . Install necessary environment with jobs
 - Enables Computing On Demand
 - Integrate SRM/RRS into compute job workflow
 - Makes cataloging generated data seamless with compute work (not yet achieved for all STAR compute modes)