
13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 1

IMPLEMENTATION OF THE EVENT TAG DB

P. Christakoglou

University of Athens – CERN

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 2

OUTLINE

Introduction
Motivation
Event Tag DB @ STAR

Grid Collector
GC's components
Architecture

Bitmap Index
Alice tag prototype

Tag Class description
Proposed scenarios and architecture
Summary & next steps

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 3

INTRODUCTION

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 4

MOTIVATION

Users want to analyze only some “interesting events” and not the whole
data sample.

Events are stored in millions of files.

These files are distributed on many SEs.

Typical analysis jobs read one event at a time and thus loop over many
events that have no significance to the corresponding analysis (mainly
time consuming).

We want to implement a system that will store all the necessary
information so that a user can query it in order to select and analyze
the delivered events of interest.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 5

STAR DATABASE SYSTEM

STAR uses MySQL as its main db engine.

They’ve created several dbs in order to monitor different procedures:
CONDITIONS DB: Online record of the measured operating conditions of
the detectors.
CONFIGURATIONS DB: Online repository of detector settings for
configuring runs.
SCALERS DB: Online record of scaler quantities from trigger & RHIC.
RUNLOG DB: Online record of each experimental run
CALIBRATION DB: Offline record of detector-signal corrections.
GEOMETRY DB: Offline record of geometrical & material constants for the
STAR systems
RUNPARAM/CODEPARAM DB: Offline code-constants for reconstruction &
analyses.
TAG DB: Offline event level summary record for query-access to data.
PRODUCTION DB : Offline record of production processing and file
locations.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 6

STAR TAG DB

Tag data are stored in root files (tree structures).

Physics tags are created during reconstruction.

The corresponding fields are defined and described in C structures.

They have different tag branches with respect to the physics topic:
FLOW TAG
E-by-E TAG
HEAVY FLAVOR TAG
HIGH Pt TAG
PERIPHERAL COLLISIONS TAG
SPECTRA TAG
STRANGENESS TAG
HBT TAG

The physics related tags are around 200.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 7

GRID COLLECTOR

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 8

GRID COLLECTOR

Grid Collector (GC) is a set of software designed to provide file-
transparent event access for analysis programs.

Users specify their requests for events as sets of conditions on
physically meaningful attributes (such as trigger, production version,
multiplicity etc.)

GC resolves the given conditions into a list of files containing the
events.

It locates the files and then transfers them if necessary.

Finally the selected events are passed to the analysis programs.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 9

GC COMPENENTS

Build indices for each attribute listed in the tag.root file.
Index builder.

Translate the selection criteria provided by the user into a list of files
and events in the files.

Query interpreter.
Locate the files containing the events of interest.

Event Catalog, file & replica catalogs.
Prepare disk space and transfer.

Prepare disk space for the files.
Disk Resource Manager (DRM).

Transfer the files to the disks.
Hierarchical Resource Manager (HRM) to access HPSS.
On-demand transfers from HRM to DRM.

Recover from any errors.
HRM recovers from HPSS failures.
DRM recovers from network transfer failures.

Read the events of interest from files.
Event Iterator with fast forward capability.

Remove the files.
DRM performs garbage collection using pinning and lifetime.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 10

GRID COLLECTOR ARCHITECTURE

Analysis code

New query

Event iterator

Query
Interpreter

In: conditions
Out: logical files,

event IDs

File Locator
In: logical name,

Out: physical
location

Grid Collector

File Scheduler
In: physical file

DRM

Administrator

Fetch tag file
Load subset
Rollback
Commit

Index Builder
In: STAR tag file
Out: bitmap index

NFS, local disk

File Catalog

HRM 1

HRM 2

Clients Servers

File Catalog

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 11

MAIN GC FEATURES (ALICE)

QUERY INTERPRETER
It takes as an input the tag root files.
The index builder reads the values of each attribute and generates the
corresponding indices.
These indices are stored in separate files.
The QI then, translates the selection criteria provided by the user into a
list of files and events in the files that satisfy them.

EVENT ITERATOR
Glues the analysis framework to the GC.
Its constructor takes a string argument which is a simplified version of the
SQL select statement.
The EI retrieves the files and passes the selected events to the analysis
code.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 12

INDEX EXAMPLE

5675
5434
3453
8002
7311

NumberOfKaonsEventID

Read all events

NTUPLE

8002
7311
5675
5434
3453

NumberOfKaonsEventID

INDEX

Read selected events

Condition: SELECT NumberOfKaons>700

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 13

ALICE EVENT TAG SYSTEM

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 14

ALICE TAG SYSTEM - PROTOTYPE

Consists of 4 levels of informationat the moment:
RunTag fields: Run specific information.
LHCTag fields: Information concerning the state of LHC per Alice run.
DetectorTag fields : Detector information per run.
EventTag fields: Information about each event.

This is just a preliminary attempt.

Any suggestions (I’m sure there will be many) are more than welcome!!!

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 15

RunTag fields
AliceRunId

The run's unique identifier will be written in the raw data's header and will be
retrieved from there (DAQ).

AliceMagneticField
The value of the magnetic field which will be retrieved from the DCS as values for

different space-points (DCS)
AliceRunStartTime

This information will be stored in the header of the raw data (DAQ).
AliceRunStopTime

This information will be stored in the header of the raw data (DAQ).
AliceReconstructionVersion

Information from the reconstruction procedure (offline onformation).
AliceRunQuality

boolean, information coming from the validation script.
AliceBeamEnergy

Information about the cm beam energy that is read by the DCS directly from the
machine and is stored in the db (DAQ or DCS)

AliceBeamType: information about the colliding system type (pp, pA, AA)
Will be stored in the statistics database or even in the header of the raw data or it will
be retrived from the DCS db that reads it directly from the machine (DCS)

AliceCalibrationVersion

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 16

LHCTag fields

LHCState:
Maybe some comments describing the LHC run status (“test run” ...).

LHCLuminosity:
The luminosity value that will be read by the DCS directly from the LHC
control.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 17

DetectorTag fields

Describes the detector configuration for each run.

Consists of several fields that describe boolean parameters and show
the status of each detector (active or not).

Open questions concerning this level:
Should we have default configurations?
Should we have different sub-tables for each detector?
Should we have a connection to the corresponding online detector db and
retrieve the information from there?

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 18

EventTag fields (1)

AliceEventId
GUID: The file's unique identifier that comes directly from AliEn.
NumberOfParticipants: Information coming from the ZDC.
ImpactParameter: Calculated impact parameter from the number of
participants.
PrimaryVertexX
PrimaryVertexY
PrimaryVertexZ
TriggerInfo

ZDCNeutronEnergy: Reconstructed energy in the neutron ZDC.
ZDCProtonEnergy: Reconstructed energy in the proton ZDC.
ZDCEMEnergy: Reconstructed energy in the EM ZDC.

T0VertexZ: Vertex Z position estimated by the START.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 19

EventTag fields (2)

NumberOfTracks: Total multiplicity
NumberOfPositiveTracks
NumberOfNegativeTracks
NumberOfNeutralTracks
NumberOfV0s
NumberOfCascades
NumberOfKinks
NumberOfPMDTracks
NumberOfPHOSTracks
NumberOfEMCALTracks
NumberOfFMDTracks

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 20

EventTag fields (3)

NumberOfJetCandidates
NumberOfHardPhotonsCandidates
NumberOfElectrons
NumberOfMuons
NumberOfPions
NumberOfKaons
NumberOfProtons
NumberofLambdas
K0PeakPosition
K0PeakWidth

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 21

EventTag fields (4)

NumberOfJPsiCandidates
NumberOfPsiPrimeCandidates
NumberOfUpsilonCandidates
NumberOfUpsilonPrimeCandidates
NumberOfCharmParticleCandidates
NumberOfBeautyParticleCandidates
TotalP
MeanPt
MaxPt
FlowV1
FlowV2

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 22

AliRunTag Class

Constructor: AliRunTag();
Set methods:

void SetRunId(Int_t Pid) {fAliceRunId = Pid;}
void SetMagneticField(Float_t Pmag) {fAliceMagneticField = Pmag;}
void SetBeamType(char *Ptype) {strcpy(fAliceBeamType,Ptype);}
void SetLHCTag(Float_t Plumin, char *type);

Get methods:
Int_t GetRunId() {return fAliceRunId;}
Float_t GetMagneticField() {return fAliceMagneticField;}
char *GetBeamType() {return fAliceBeamType;}
LHCTag *GetLHCTag() { return &fLHCTag; }
EventTag *GetEventTag() { return &fEvTag; }

An additional method that fills the EventTag class (TclonesArray in
AliRunTag)

void AddEventTag(AliEventTag *t);

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 23

AliLHCTag Class

Constructor: AliLHCTag();
Set methods:

void SetLHCState(char *type) {strcpy(fLHCState,type);}
void SetLuminosity(Float_t lumin) {fLHCLuminosity = lumin;}
void SetLHCTag(Float_t lumin, char *type) {fLHCLuminosity = lumin;
strcpy(fLHCState,type); }
void SetLHCTag(Float_t Plumin, char *type);

Get methods:
Float_t GetLuminosity() {return fLHCLuminosity;}
char *GetLHCState() {return fLHCState;}

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 24

AliDetectorTag Class

Constructor:
AliDetectorTag();
AliEventTag(AliEventTag *t); :: Copy constructor

Set methods:
void SetITS(Int_t n) {fITS = n;}
void SetTPC(Int_t n) {fTPC = n;}

Get methods:
Int_t GetITS() {return fITS;}
Int_t GetTPC() {return fTPC;}

An additional private method that fills the AliDetectorTag clones.
virtual void CopyTag(AliDetectorTag *DetTag);

SetITS(DetTag->GetITS());
SetTPC(DetTag->GetTPC());

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 25

AliEventTag Class

Constructors:
AliEventTag(); :: Initializes the AliEventTag fields
AliEventTag(AliEventTag *t); :: Copy constructor

Set methods:
void SetEventId(Int_t Pid) {fAliceEventId = Pid;}
void SetGUID(Int_t Pid) {fGUID = Pid;}
void SetNumOfParticipants(Int_t P) {fNumberOfParticipants = P;}

Get methods:
Int_t GetEventId() {return fAliceEventId;}
Int_t GetGUID() {return fGUID;}

An additional private method that fills the AliEventTag clones.
virtual void CopyTag(AliEventTag *EvTag);

SetEventId(EvTag->GetEventId());
SetGUID(EvTag->GetGUID());

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 26

PROPOSED IMPLEMENTATION

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 27

PROPOSED SCENARIOS

“On the fly” creation:
Run the reconstruction code and create the ESDs.
Wait until the ESD is registered in AliEn and then perform an extra step in
order to retrieve the corresponding location and the GUID.
Create the tag.root file by adding also the unique identifier.
Register the tag.root file in AliEn.

Post creation:
Run the reconstruction code, create the ESD and register it in AliEn.
Run a fast and efficient “post process” that will loop over all ESDs of a run
and fill the tag.root files.
Register the tag.root file in AliEn.

Use the GC in order to produce the corresponding indices for every
attribute that will be stored in the tag.root file.

Use the GC in the analysis framework in order to have fast and
efficient access to the events of interest by imposing selection criteria
inside the analysis macro.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 28

PROPOSED ARCHITECTURE

Analysis code

New query

Event iterator

Query
Interpreter

In: conditions
Out: logical files,

event IDs

AliEn File
Locator

In: logical name,
Out: physical

location

Grid Collector

AliEn File
Scheduler

In: physical file

DRM

Administrator

Fetch tag file
Load subset
Rollback
Commit

Index Builder
In: STAR tag file
Out: bitmap index

NFS, local disk

File Catalog

Clients Servers

File Catalog

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 29

SUMMARY

STAR collaborators use GC in order to select and analyze specific
events and not the whole data sample.
GC’s component that builds the indices will be included in ROOT’s new
version.
ALICE’s event tag prototype consists of ~70 parameters but more will
be added.
Two proposed scenarios for the implementation in ALICE:

“On the fly” production of tag.root files.
Post production of tag.root files.

NEXT STEPS
• Feedback from the PWG concerning parameters that they might want

to include.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 30

BACKUP

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 31

BITMAP INDEX

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 32

BITMAP INDEX

Kurt Stockinger @LBNL is working on this subject.

It is going to be implemented in ROOT’s new version that will be
released soon.

Thanks to Kurt who sent the code I’ve managed to run a few examples
and tests:

Create a root file that consists of a tree that has two attributes (one
integer & one float).
Increased the number of entries and calculated the time needed in order to
build the indices.
Increased the number of entries and compared the time needed to evaluate
a query when using:

TTree::Draw
TBitmapIndex::Draw

Check the size of the index files with respect to the number of entries .

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 33

BITMAP INDEX TESTS – BUILDING TIME

Building time is proportional to the
number of entries.

This time depends also on the
number of parameters that are used
in order to build the indices.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 34

BITMAP INDEX TESTS – TIME COMPARISON

One dimensional query Multi dimensional query

Both calculated times are
proportional to the number of entries.

Bitmap index evaluates the 1-dim
query 40% faster than TTree.

Both calculated times are
proportional to the number of entries.

Bitmap index evaluates the 2-dim
query 49% faster than TTree.

13-06-2005 Panos.Christakoglou@cern.ch - ALICE week 35

BITMAP INDEX TESTS - SIZE

Both calculated sizes are
proportional to the number of entries.

The size of the integer index file is
almost 50% smaller than the
corresponding size of the float index
file.

