Twistoresque Methods for Perturbative QCD

Lance Dixon, SLAC
LoopFest IV, Snowmass
August 19, 2005

Introduction

- Need a flexible, efficient method to extend range of known tree, and particularly 1-loop QCD amplitudes with many external legs, for use in NLO corrections to many LHC processes, some ILC processes, etc.
- 1-loop not known beyond $n=5$ legs, except for special helicity configurations
- Semi-numerical approaches to 1-loop amplitudes are one way to go, e.g.

Denner, Dittmaier, ..., hep-ph/0212259,...; Nagy, Soper, hep-ph/0308127;
Giele, Glover, hep-ph/0402152; Andonov et al., hep-ph/0411186;
van Hameren, Vollinga, Weinzierl, hep-ph/0502165; Binoth et al., hep-ph/0504267;
Ellis, Giele, Zanderighi, hep-ph/0506196 [Hgggg, Hqqgg, Hqqqq]

Introduction (cont.)

- Another approach is to pay attention to the analytic properties of amplitudes
- poles (factorization) at tree level
- poles and branch cuts (unitarity) at loop level
- In this approach one can incorporate hidden symmetries of tree level QCD, due to its relation to N=4 super-Yang-Mills theory:

Grisaru, Pendleton,

- supersymmetry Ward identities
van Nieuwenhuizen (1977)
- connection to twistor space and to twistor string theory

Penrose (1967)
Witten, hep-th/0312171

- These symmetries have loop-level implications for QCD via unitarity

Outline

- Motivation
- Role of $\mathrm{N}=4$ super-Yang-Mills theory
- Color \& helicity
- Supersymmetry Ward identities
- Twistor space, twistor strings, \& MHV tree rules
- On-shell recursion relations at tree level
- (Generalized) unitarity and twistor structure of 1-loop amplitudes in $\mathrm{N}=4$ super-Yang-Mills theory
- On-shell recursion relations at 1-loop, leading to new QCD amplitudes with 6 or more legs
- Conclusions

Role of $\mathrm{N}=4$ super-Yang-Mills theory

- Essentially unique, maximally supersymmetric, conformal field theory
- Topological string in twistor space witten, hep-th/0312171 is most directly for $\mathrm{N}=4 \mathrm{SYM}$
- $N=4$ SYM \Leftrightarrow QCD at tree level; can be thought of as 1 component of QCD at 1 loop
- Loop-level scattering amplitudes share many properties with those of QCD, but are simpler
\Rightarrow "theoretical playground"

N=4 super-Yang-Mills theory

State multiplicities:

Feynman rules: Usual gauge interactions, plus $W(\Phi)$

Tree level

- $N=4$ SYM \Leftrightarrow QCD at tree level for n-gluon amplitude because no fermions \& scalars enter (as they must be pair-produced)

- Similar relations with external fermions too

One loop rearrangement

Can rewrite gluon (and fermion) loop for n-gluon QCD amplitude as linear combinations of:

- $\mathrm{N}=4$ SYM (simplest)
- $\mathrm{N}=1$ chiral matter multiplet (next simplest)
- scalar (non-supersymmetric, but no spin-tangling)

Similar relations with external fermions

Color-ordered amplitudes

Decompose tree-level n-gluon amplitudes as

$$
\begin{aligned}
\mathcal{A}_{n}^{\text {tree }}\left(\left\{k_{i}, \lambda_{i}, a_{i}\right\}\right)=g^{n-2} & \sum_{\sigma \in S_{n} / Z_{n}}
\end{aligned} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}\right)
$$

$A_{n}^{\text {tree }}$ color-ordered, only receive contributions from cyclicly-ordered Feynman diagrams,

Mangano,
Parke (1986) so poles in fewer kinematic variables
Similarly decompose 1-loop n-gluon amplitudes as

$$
\begin{aligned}
\mathcal{A}_{n}^{1-\text { loop }}\left(\left\{k_{i}, \lambda_{i}, a_{i}\right\}\right)= & g^{n} N_{c} \sum_{\sigma \in S_{n} / Z_{n}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}\right) \\
& \quad \times A_{n ; 1}\left(\sigma\left(1^{\lambda_{1}}\right), \ldots, \sigma\left(n^{\lambda_{n}}\right)\right)+\mathcal{O}\left(1 / N_{c}\right)
\end{aligned}
$$

Subleading-color terms, coeff's of $\operatorname{Tr}(..) \operatorname{Tr}(.$.$) , not$ independent; sums of perm's of color-ordered $A_{n ; 1}$

Bern, Dunbar,
LD, Kosower,
hep-ph/9403226

Spinor variables

Use Dirac (Weyl) spinors $u_{\alpha}\left(k_{i}\right) \quad($ spin $1 / 2)$, not 4 -vectors $k_{i}^{\mu} \quad(\operatorname{spin} 1)$
right-handed: $\left(\lambda_{i}\right)_{\alpha}=u_{+}\left(k_{i}\right)$ left-handed: $\left(\widetilde{\lambda}_{i}\right)_{\dot{\alpha}}=u_{-}\left(k_{i}\right)$
Reconstruct k_{i}^{μ} from $u_{\alpha}\left(k_{i}\right)$ using positive-energy Dirac projector:
$k_{i}^{\mu}\left(\sigma_{\mu}\right)_{\alpha \dot{\alpha}}=\left(k_{i}\right)_{\alpha \dot{\alpha}}=u_{+}\left(k_{i}\right) \bar{u}_{+}\left(k_{i}\right)=\left(\lambda_{i}\right)_{\alpha}\left(\tilde{\lambda}_{i}\right)_{\dot{\alpha}}$
Singular 2×2 matrix: $\quad \operatorname{det}\left(k_{i}\right)=\left|\begin{array}{cc}k_{t}+k_{z} & k_{x}-i k_{y} \\ k_{x}+i k_{y} & k_{t}-k_{z}\end{array}\right|$

$$
=k_{t}^{2}-k_{x}^{2}-k_{y}^{2}-k_{z}^{2}=0
$$

$$
\text { also shows } \quad\left(K_{i}\right)_{\alpha \dot{\alpha}}=\left(\lambda_{i}\right)_{\alpha}\left(\tilde{\lambda}_{i}^{\prime}\right)_{\dot{\alpha}}
$$

even for complex momenta
Gluon polarizations also in terms of spinors: $\varepsilon_{\mu}^{ \pm}(k, \eta)= \pm \frac{\left\langle k^{ \pm}\right| \gamma_{\mu}\left|\eta^{ \pm}\right\rangle}{\sqrt{2}\left\langle k^{\mp} \mid \eta^{ \pm}\right\rangle}$

Spinor products

Instead of Lorentz products:

$$
s_{i j}=2 k_{i} \cdot k_{j}=\left(k_{i}+k_{j}\right)^{2}
$$

Use spinor products:

$$
\begin{aligned}
& \bar{u}_{-}\left(k_{i}\right) u_{+}\left(k_{j}\right)=\varepsilon^{\alpha \beta}\left(\lambda_{i}\right)_{\alpha}\left(\lambda_{j}\right)_{\beta}=\langle i j\rangle \\
& \bar{u}_{+}\left(k_{i}\right) u_{-}\left(k_{j}\right)=\varepsilon^{\dot{\alpha} \dot{\beta}}\left(\tilde{\lambda}_{i}\right)_{\dot{\alpha}}\left(\tilde{\lambda}_{j}\right)_{\dot{\beta}}=[i j]
\end{aligned}
$$

These are complex square roots of Lorentz products:

$$
\langle i j\rangle[j i]=\frac{1}{2} \operatorname{Tr}\left[\not k_{i} \not k_{j}\right]=2 k_{i} \cdot k_{j}=s_{i j}
$$

$$
\langle i j\rangle=\sqrt{s_{i j}} e^{i \phi_{i j}} \quad[j i]=\sqrt{s_{i j}} e^{-i \phi_{i j}}
$$

Supersymmetry Ward identities

Grisaru, Pendleton, van Nieuwenhuizen (1977)
In any unbroken supersymmetric theory, $Q|0\rangle=0$, so

$$
0=\langle 0|\left[Q, \Phi_{1} \Phi_{2} \cdots \Phi_{n}\right]|0\rangle=\sum_{i=1}^{n}\langle 0| \Phi_{1} \cdots\left[Q, \Phi_{i}\right] \cdots \Phi_{n}|0\rangle
$$

Leads to powerful S-matrix identities:

$$
\begin{aligned}
& A_{n}^{\text {SUSY }}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, \ldots, n^{+}\right)=0 \\
& A_{n}^{\text {SUSY }}\left(1_{f}^{-}, 2_{f}^{+}, 3^{-}, 4^{+}, \ldots, n^{+}\right)=\frac{\langle 23\rangle}{\langle 13\rangle} \times A_{n}^{\text {SUSY }}\left(1^{-}, 2^{+}, 3^{-}, 4^{+}, \ldots, n^{+}\right) \\
& \frac{A_{n}^{\mathcal{N}=4 \operatorname{SUSY}}\left(1^{+}, 2^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)}{\langle i j\rangle^{4}} \text { indep. of } i, j \quad \text { etc. }
\end{aligned}
$$

- Results hold order by order in perturbation theory.
- At tree-level, can be applied directly to QCD.

Twistor Space

Start in spinor space: Amplitudes $A\left(k_{i}\right) \Rightarrow A\left(\lambda_{i}, \tilde{\lambda}_{j}\right)$
Twistor transform = "half Fourier transform":
Fourier transform $\tilde{\lambda}_{i}$, but not λ_{i}, for each leg i

$$
\tilde{\lambda}_{\dot{a}}=i \frac{\partial}{\partial \mu^{\dot{a}}} \quad \mu^{\dot{a}}=-i \frac{\partial}{\partial \tilde{\lambda}_{\dot{a}}}
$$

Twistor space coordinates: $\quad\left(\lambda_{1}, \lambda_{2}, \mu^{\dot{1}}, \mu^{\dot{2}}\right)$ for each i $\sim\left(\xi \lambda_{1}, \xi \lambda_{2}, \xi \mu^{1}, \xi \mu^{2}\right)$
Amplitudes $A\left(k_{i}\right) \Rightarrow A\left(\lambda_{i}, \widetilde{\lambda}_{i}\right) \Rightarrow A\left(\lambda_{i}, \mu_{i}\right)$

Twistor Transform in QCD

Twistor implications in spinor space

- Vanishing relations on curves in twistor space \Longrightarrow differential equations in $\left(\lambda_{i}, \tilde{\lambda}_{j}\right)$ space.
- i, j, k have collinear support if A annihilated by
$C_{i j k L}=\epsilon_{I J K L} Z_{i}^{I} Z_{j}^{J} Z_{k}^{K} \rightarrow\langle i j\rangle \frac{\partial}{\partial \tilde{\lambda}_{k}^{\dot{i}}}+\langle j k\rangle \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{i}}}+\langle k i\rangle \frac{\partial}{\partial \tilde{\lambda}_{j}^{\dot{i}}}$ for $L=\dot{a}$.
- i, j, k, l are coplanar if A annihilated by
$K_{i j k l}=\epsilon_{I J K L} Z_{i}^{I} Z_{j}^{J} Z_{k}^{K} Z_{l}^{L} \rightarrow\langle i j\rangle \epsilon^{\dot{\dot{b}} \dot{\dot{b}}} \frac{\partial^{2}}{\partial \tilde{\lambda}_{k}^{\dot{\dot{L}}} \partial \tilde{\lambda}_{l}^{\dot{b}}}+5$ perms

More Twistor Magic

Using collinear/coplanar differential operators, find:

Witten,
hep-th/0312171

Twistor magic from twistor strings

Original intuition from topological string: L-loop amplitude with n_{-}negative-helicity gluons should be supported on curve in twistor space with degree $d=n_{-}-1+L, \quad$ genus $g \leq L$. MHV case: $n_{-}=2, g=0 \Rightarrow d=1$, a straight line.
"Experimentation" showed situation actually better than that for tree amplitudes:

Cachazo, Svrček, Witten (2004)
supported on $n_{-}-1$ intersecting straight lines (degenerate limit of the degree d curve)

MHV rules

Based on the "experimental" results, and an interpretation of the twistor string path integral, Cachazo, Svrcek, Witten, hep-th/0403047 proposed "MHV rules" for n-gluon scattering:

For example, if a + leg goes off-shell, use:

$$
\begin{aligned}
A_{n}^{\text {tree }, \mathrm{MHV}, i j}\left(1^{*}\right) & =\frac{\langle i j\rangle^{4}}{\left\langle 1^{*} 2\right\rangle \ldots\left\langle n 1^{*}\right\rangle} \\
& =\frac{\langle i j\rangle^{4}}{\left\langle\eta^{+}\right| 1\left|2^{+}\right\rangle \ldots\left\langle n^{-}\right| 1\left|\eta^{-}\right\rangle}
\end{aligned}
$$

MHV rules for trees

Rules quite efficient, extended to many collider applications

- massless quarks

```
Georgiou, Khoze, hep-th/0404072;
Wu, Zhu, hep-th/0406146;
Georgiou, Glover, Khoze, hep-th/0407027
```

- Higgs bosons (Hgg coupling)
- vector bosons ($\left.W, Z, \gamma^{*}\right)$

LD, Glover, Khoze, hep-th/0411092;
Badger, Glover, Khoze, hep-th/0412275

Bern, Forde, Kosower, Mastrolia, hep-th/0412167

- Related approach to QCD + massive quarks more directly from field theory

Schwinn, Weinzierl, hep-th/0503015

Even better than MHV rules

On-shell recursion relations Britto, Cachazo, Feng, hep-th/0412308
$A_{n}(1,2, \ldots, n)=\sum_{h= \pm} \sum_{k=2}^{n-2} A_{k+1}\left(\widehat{1}, 2, \ldots, k,-\widehat{K}_{1, k}^{-h}\right)$

$$
\times \frac{i}{K_{1, k}^{2}} A_{n-k+1}\left(\widehat{K}_{1, k}^{h}, k+1, \ldots, n-1, \widehat{n}\right)
$$

A_{k+1} and A_{n-k+1} are on-shell tree amplitudes with fewer legs, evaluated with 2 momenta shifted by a complex amount

Proof of on-shell tree recursion

Britto, Cachazo, Feng, Witten, hep-th/0501052

- Consider a family of on-shell amplitudes $A_{n}(z)$ depending on a complex parameter z which shifts the momenta.
- Best described using spinor variables.
- For example, the $(n, 1)$ shift:

$$
\begin{aligned}
& \lambda_{1} \rightarrow \hat{\lambda}_{1}=\lambda_{1}+z \lambda_{n} \quad \tilde{\lambda}_{1} \rightarrow \tilde{\lambda}_{1} \\
& \lambda_{n} \rightarrow \lambda_{n} \quad \tilde{\lambda}_{n} \rightarrow \tilde{\lambda}_{n}=\tilde{\lambda}_{n}-z \tilde{\lambda}_{1}
\end{aligned}
$$

- On-shell condition: ${ }_{\left(\hat{k}_{1}\right)^{\mu}\left(\hat{k}_{1}\right)_{\mu}}=\left(\hat{k}_{1}\right)^{\alpha \dot{\alpha}}\left(\widehat{k}_{1}\right)_{\dot{\alpha} \alpha}$ similarly, $\hat{k}_{n}^{2}=0 \quad=\left\langle\left(\lambda_{1}+z \lambda_{n}\right)\left(\lambda_{1}+z \lambda_{n}\right\rangle\right\rangle[11]=0$
- Momentum conservation:

$$
\hat{k}_{1}+\hat{k}_{n}=\left(\lambda_{1}+z \lambda_{n}\right) \tilde{\lambda}_{1}+\lambda_{n}\left(\tilde{\lambda}_{n}-z \tilde{\lambda}_{1}\right)=k_{1}+k_{n}
$$

MHV example

- Apply this shift to the Parke-Taylor (MHV) amplitudes:

$$
A_{n}(z=0)=A_{n}^{j n, \mathrm{MHV}}=\frac{\langle j n\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

- Under the (n,1) shift: $\quad \lambda_{1} \rightarrow \lambda_{1}+z \lambda_{n} \quad \tilde{\lambda}_{n} \rightarrow \tilde{\lambda}_{n}-z \tilde{\lambda}_{1}$

$$
\begin{aligned}
& \langle n 1\rangle=\lambda_{n} \lambda_{1} \rightarrow \lambda_{n}\left(\lambda_{1}+z \lambda_{n}\right)=\langle n 1\rangle+z\langle n n\rangle=\langle n 1\rangle \\
& \langle 12\rangle=\lambda_{1} \lambda_{2} \rightarrow\left(\lambda_{1}+z \lambda_{n}\right) \lambda_{2}=\langle 12\rangle+z\langle n 2\rangle
\end{aligned}
$$

- So

$$
A_{n}(z)=\frac{\langle j n\rangle^{4}}{(\langle 12\rangle+z\langle n 2\rangle)\langle 23\rangle \cdots\langle n 1\rangle}-\frac{\langle 12\rangle}{\langle n 2\rangle}
$$

- Consider: $\frac{1}{2 \pi i} \oint_{C} d z \frac{A_{n}(z)}{z}$
- 2 poles, opposite residues

MHV example (cont.)

- MHV amplitude obeys:

$$
A_{n}(0)=-{ }_{z=-\frac{\langle 12\rangle}{\langle n 2\rangle} \frac{A_{n}(z)}{z}}
$$

- Compute residue using factorization
- At $z=-\frac{\langle 12\rangle}{\langle n 2\rangle}=-\frac{\langle 12\rangle[21]}{\langle n 2\rangle[21]}=-\frac{s_{12}}{\left\langle n^{-}\right|(1+2)\left|1^{-}\right\rangle}$ kinematics are complex collinear

$$
\begin{aligned}
\langle\hat{1} 2\rangle & =\langle 12\rangle+z\langle n 2\rangle=0 \quad[\hat{1} 2]=\left[\begin{array}{ll}
1 & 2] \neq 0 \\
s_{\hat{1} 2} & =\langle\hat{1} 2\rangle[2 \hat{1}]=0
\end{array}\right.
\end{aligned}
$$

- SO $-_{z=-\frac{\langle 12\rangle}{\langle n 2\rangle}}^{\text {Res }} \frac{A_{n}(z)}{z}=A_{n-1}\left(\hat{P}_{12}^{+}, 3^{+}, \ldots, j^{-}, \ldots, n^{-}\right)$
note

$$
\times\left[{ }_{-}^{-\operatorname{Res}} \underset{z=-\frac{122}{\langle n 2\rangle}}{z} \frac{1}{z} \frac{1}{\hat{P}_{12}^{2}(z)}\right] A_{3}\left(\hat{1}^{+}, 2^{+},-\hat{P}_{12}^{-}\right)
$$

Evaluate ingredients

- Since $\hat{P}_{12}^{2}(z)=\left(k_{1}+k_{2}+z \lambda_{n} \widetilde{\lambda}_{1}\right)^{2}=s_{12}+z\left\langle n^{-}\right|(1+2)\left|1^{-}\right\rangle$
- So
$A_{n}(0)=A_{n-1}\left(\hat{P}_{12}^{+}, 3^{+}, \ldots, j^{-}, \ldots, n^{-}\right) \frac{1}{s_{12}} A_{3}\left(\hat{1}^{+}, 2^{+},-\widehat{P}_{12}^{-}\right.$
- Check this explicitly:

$$
\begin{aligned}
A_{n}(0) & =\frac{\langle j \widehat{n}\rangle^{4}}{\langle\hat{P} 3\rangle\langle 34\rangle \cdots\langle n-1, \hat{n}\rangle\langle\hat{n} \hat{P}\rangle} \frac{1}{s_{12}} \frac{[\hat{1} 2]^{3}}{[2 \hat{P}][\hat{P} \hat{1}]} \\
& =\frac{\langle j n\rangle^{4}}{\langle\hat{P} 3\rangle\langle 34\rangle \cdots\langle n-1, n\rangle\langle n \hat{P}\rangle} \frac{1}{s_{12}} \frac{[12]^{3}}{[2 \widehat{P}][\widehat{P} 1]}
\end{aligned}
$$

MHV check (cont.)

- Using $\langle n \hat{P}\rangle[\hat{P} 2]=\left\langle n^{-}\right|(1+2)\left|2^{-}\right\rangle+z\langle n n\rangle[12]=\langle n 1\rangle[12]$

$$
\langle 3 \hat{P}\rangle[\hat{P} 1]=\left\langle 3^{-}\right|(1+2)\left|1^{-}\right\rangle+z\langle 3 n\rangle[11]=\langle 32\rangle[21]
$$

one confirms

$$
\begin{aligned}
A_{n}(0) & =\frac{\langle j n\rangle^{4}}{\langle\widehat{P} 3\rangle\langle 34\rangle \cdots\langle n-1, n\rangle\langle n \widehat{P}\rangle} \frac{1}{s_{12}} \frac{[12]^{3}}{[2 \widehat{P}][\hat{P} 1]} \\
& =\frac{\langle j n\rangle^{4}[12]^{3}}{(\langle 12\rangle[21])([12]\langle 23\rangle)(\langle n 1\rangle[12])\langle 34\rangle \cdots\langle n-1, n\rangle} \\
& =\frac{\langle j n\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1, n\rangle\langle n 1\rangle} \\
& =A_{n}^{j n, \mathrm{MHV}}
\end{aligned}
$$

So MHV amplitudes from $n=4$ on are derived recursively

The general case

Same analysis as above - Cauchy's theorem + amplitude factorization

Let complex momentum shift depend on z. Use analyticity in z.

$$
\begin{aligned}
& \hat{\lambda}_{1}=\lambda_{1}+z \lambda_{n} \\
& \hat{\lambda}_{n}=\lambda_{n}
\end{aligned} \begin{array}{r}
\hat{\lambda}_{1}=\tilde{\lambda}_{1} \\
\hat{\lambda}_{n}=\tilde{\lambda}_{n}-z \tilde{\lambda}_{1}
\end{array} \Rightarrow A(0) \rightarrow A(z)
$$

Cauchy: If $A(\infty)=0$ then

$$
0=\frac{1}{2 \pi i} \oint d z \frac{A(z)}{z}=A(0)+\left.\sum_{k} \operatorname{Res}\left[\frac{A(z)}{z}\right]\right|_{z=z_{k}}
$$

poles in z : physical factorizations $\widehat{K}_{1, k}^{2}=0$ residue at $z_{k}=-\frac{K_{1, k}^{2}}{\left.\left.\left\langle n^{-}\right| K_{1, k}\right|^{-\rangle}\right\rangle}=\left[k^{\text {th }}\right.$ term $]$

Momentum shift

Shift for $k^{\text {th }}$ term

 comes from setting $z=z_{k}$, where$z_{k}=-\frac{K_{1, k}^{2}}{\left\langle n^{-}\right| K_{1, k}\left|1^{-}\right\rangle}$

is the solution to
$\widehat{K}_{1, k}^{2}(z)=0=\left(K_{1, k}+z \lambda_{n} \tilde{\lambda}_{1}\right)^{2}=K_{1, k}^{2}+z \lambda_{n}^{a}\left(K_{1, k}\right)_{a \dot{a}} \tilde{\lambda}_{1}^{\dot{a}}$
plugging in, shift is:

$$
\begin{aligned}
& \hat{\lambda}_{1}=\lambda_{1}-\frac{K_{1, k}^{2}}{\left\langle n^{-}\right| K_{1, k}\left|1^{-}\right\rangle} \lambda_{n} \quad \tilde{\tilde{\lambda}}_{1}=\tilde{\lambda}_{1} \\
& \hat{\lambda}_{n}=\lambda_{n} \quad \tilde{\tilde{\lambda}}_{n}=\tilde{\lambda}_{n}+\frac{K_{1, k}^{2}}{\left\langle n^{-}\right| K_{1, k}\left|1^{-}\right\rangle} \tilde{\lambda}_{1}
\end{aligned}
$$

To show: $A(\infty)=0$

Britto, Cachazo, Feng, Witten, hep-th/0501052

Propagators:

$$
\frac{1}{\widehat{K}_{1, k}^{2}(z)}=\frac{1}{K_{1, k}^{2}+z \lambda_{n}^{a}\left(K_{1, k}\right)_{a \dot{a}} \check{\lambda}_{1}^{\dot{a}}} \sim \frac{1}{z}
$$

3-point vertices: $\propto \widehat{k}^{\mu}(z) \propto z$

Polarization vectors:

$\not \varnothing_{1}^{+} \propto \frac{\tilde{\lambda}_{1} \lambda_{q}}{\left\langle\lambda_{1} \lambda_{q}\right\rangle} \propto \frac{1}{z} \quad \not \varnothing_{n}^{-} \propto \frac{\lambda_{n} \tilde{\lambda}_{q}}{\left\langle\tilde{\lambda}_{n} \tilde{\lambda}_{q}\right\rangle} \propto \frac{1}{z}$
Total:

$$
\frac{1}{z} \times\left(z \frac{1}{z}\right)^{r} z \times \frac{1}{z}=\frac{1}{z}
$$

A 6-gluon example

220 Feynman diagrams for $\operatorname{ggg} g \mathrm{gg}$
Helicity + color + MHV results + symmetries
\Rightarrow only $A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right), A_{6}\left(1^{+}, 2^{+}, 3^{-}, 4^{+}, 5^{-}, 6^{-}\right)$

3 BCF diagrams
$\rightarrow 2$
$\rightarrow 1$

related by symmetry

The one $A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)$diagram

$$
=i \frac{\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle^{3}}{\langle 61\rangle\langle 12\rangle[34][45] s_{612}\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle}
$$

$$
\begin{aligned}
\langle 6 \widehat{K}\rangle[\widehat{K} a] & =\langle 61\rangle[1 a]+\langle 62\rangle[2 a] \\
& =\left\langle 6^{-}\right|(1+2)\left|a^{-}\right\rangle \\
{[5 \hat{\sigma}] } & =[56]+\frac{s_{12}[51]}{\langle 62\rangle[21]}=\frac{\left\langle 5^{+}\right|(6+1)\left|2^{+}\right\rangle}{\langle 62\rangle}
\end{aligned}
$$

$[\hat{6} \widehat{K}]\langle\widehat{K} 6\rangle=\left\langle 6^{+}\right|(1+2)\left|6^{+}\right\rangle+s_{12}=s_{612}$

Simple final form

$$
\begin{aligned}
-i A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)= & \frac{\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle^{3}}{\langle 61\rangle\langle 12\rangle[34][45] s_{612}\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle} \\
& +\frac{\left\langle 4^{-}\right|(5+6)\left|1^{-}\right\rangle^{3}}{\langle 23\rangle\langle 34\rangle[56][61] s_{561}\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle}
\end{aligned}
$$

Simpler than form found in 1980s Mangano, Parke, Xu (1988) despite (because of?) spurious singularities $\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle$

$$
\begin{aligned}
-i A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)= & \frac{\left([12]\langle 45\rangle\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle\right)^{2}}{s_{61} s_{12} s_{34} s_{45} s_{612}} \\
& +\frac{\left([23]\langle 56\rangle\left\langle 4^{-}\right|(2+3)\left|1^{-}\right\rangle\right)^{2}}{s_{23} s_{34} s_{56} s_{61} s_{561}} \\
& +\frac{s_{123}[12][23]\langle 45\rangle\langle 56\rangle\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle\left\langle 4^{-}\right|(2+3)\left|1^{-}\right\rangle}{s_{12} s_{23} s_{34} s_{45} s_{56} s_{61}}
\end{aligned}
$$

Relative simplicity even more striking for $n>6$

On-shell recursion at tree-level

Rules even more efficient, and easily extendable than MHV rules:

- massless quarks

Luo, Wen, hep-th/0501121, 0502009

- massive scalars

Badger, Glover, Khoze, Svrcek, hep-th/0504159;
Forde, Kosower, hep-th/0507292

- massive vector bosons and fermions Badger, Glover, Khoze, hep-th/0507161

Unitarity

- Unitarity is an efficient method for determining imaginary parts of loop amplitudes:

$$
\begin{aligned}
& S=1+i A \\
& S^{\dagger} S=1 \Rightarrow 1=\left(1-i A^{\dagger}\right)(1+i A) \\
& \Rightarrow \quad-i\left(A-A^{\dagger}\right)=2 \operatorname{Im} A=\operatorname{Disc} A=A^{\dagger} A
\end{aligned}
$$

- Efficient because it recycles trees into loops

- Only thing missing: rational functions
- Can get these using on-shell recursion relations

Generalized unitarity

Eden, Landshoff, Olive, Polkinghorne (1966); Bern, LD, Kosower, hep-ph/9708239;
Britto, Cachazo, Feng, hep-th/0412103

- Triangle and box integrals have 3 or 4 propagators "on shell". Can extract from more restrictive cut kinematics, such as:

- Get a product of 3 or 4 simpler tree amplitudes, compared with the ordinary cut.

Generailzed unitarity (cont.)

- For example, use quadruple cut to show all 4-mass box integrals vanish in all NMHV amplitudes. Bern, Del Duca, LD, Kosower, hep-th/0410224 (Have $3+4=7$ negative helicities; need $2 \times 4=8$.)

- 3-mass boxes do not vanish, because 3-point "amplitude" can be (++-) (in complex kinematics).
- Computation of $c^{3 \mathrm{~m}}$ from quadruple cut can be done algebraically because all 4 components of loop momentum are frozen by the 4 on-shell constraints Britto, Cachazo, Feng, hep-th/0412103

On-shell recursion at one loop

Bern, LD, Kosower, hep-th/0501240, hep-ph/0505055, hep-ph/0507005

- Same techniques can be used to compute one-loop amplitudes
-- which are much harder to obtain by other methods than are trees.
- First consider special tree-like one-loop amplitudes with no cuts, only poles: $A_{n}^{1-\text { loop }}\left(1^{ \pm}, 2^{+}, 3^{+}, \ldots, n^{+}\right)$

- New features arise compared with tree case due to different collinear behavior of loop amplitudes:

$$
+\infty \underbrace{\sigma^{+}}_{e_{+}} \propto \frac{[i j]}{\langle i j\rangle^{2}}
$$

A one-loop pole analysis

$$
\underbrace{3^{+}}_{3^{+}} \int_{2^{+}}^{5^{+}}=-\frac{[25]^{3}}{\sigma^{1^{-}}}+\frac{\langle 14\rangle^{3}[45]\langle 35\rangle}{\langle 12\rangle\langle 23\rangle\langle 34\rangle^{2}\langle 45\rangle^{2}}+\frac{\langle 13\rangle^{3}[23]\langle 24\rangle}{\langle 23\rangle^{2}\langle 34\rangle^{2}\langle 45\rangle\langle 51\rangle}
$$

under shift $\quad \hat{\tilde{\lambda}}_{1}=\tilde{\lambda}_{1}-z \tilde{\lambda}_{2} \quad \hat{\lambda}_{2}=\lambda_{2}+z \lambda_{1} \quad$ plus partial fraction

$$
\begin{aligned}
& \Rightarrow \quad-\frac{[25]^{3}}{([51]-z[52])[12]\langle 34\rangle^{2}} \\
&+\frac{\langle 14\rangle^{3}[45]\langle 35\rangle}{\langle 12\rangle(\langle 23\rangle+z\langle 13\rangle)\langle 34\rangle^{2}\langle 45\rangle^{2}} \\
&-\frac{\langle 13\rangle^{2}[23]\langle 12\rangle\langle 34\rangle}{(\langle 23\rangle+z\langle 13\rangle)^{2}\langle 34\rangle^{2}\langle 45\rangle\langle 51\rangle} \\
&-\frac{\langle 13\rangle^{2}[23]\langle 14\rangle}{(\langle 23\rangle+z\langle 13\rangle)\langle 34\rangle^{2}\langle 45\rangle\langle 51\rangle}
\end{aligned}
$$

Underneath the double pole

Missing diagram should be related, but suppressed by factor of S_{23}

Don't know collinear behavior at this level, must guess the correct suppression factor:

$$
s_{23} \mathcal{S}\left(a, \widehat{K}^{+}, b\right) \mathcal{S}\left(c,(-\widehat{K})^{-}, d\right)
$$

$$
\begin{array}{ll}
\text { in terms of universal eikonal } & \mathcal{S}\left(a, s^{+}, b\right)=\frac{\langle a b\rangle}{\langle a s\rangle\langle s b\rangle} \\
\text { factors for soft gluon emission } & \mathcal{S}\left(a, s^{-}, b\right)=-\frac{[a b]}{[a s][s b]}
\end{array}
$$

Here, multiplying $3^{\text {rd }}$ diagram by
$s_{23} \mathcal{S}\left(\hat{1}, \widehat{K}^{+}, 4\right) \mathcal{S}\left(3,(-\widehat{K})^{-}, \hat{2}\right)$
gives the correct missing term!

A one-loop all-n recursion relation

Same suppression factor works in the case of n external legs!

$$
\begin{aligned}
& A_{n}^{(1)}\left(1^{-}, 2^{+}, \ldots, n^{+}\right) \\
& =A_{n-1}^{(1)}\left(4^{+}, 5^{+}, \ldots, n^{+}, \hat{1}^{-}, \hat{K}_{23}^{+}\right) \frac{i}{K_{23}^{2}} A_{3}^{(0)}\left(\hat{2}^{+}, 3^{+},-\hat{K}_{23}^{-}\right) \\
& +\sum_{j=4}^{n-1} A_{n-j+2}^{(0)}\left((j+1)^{+}, 5^{+}, \ldots, n^{+}, \hat{1}^{-}, \hat{K}_{2 \ldots j}^{-}\right) \frac{i}{K_{2 \ldots j}^{2}} A_{j}^{(1)}\left(\hat{2}^{+}, 3^{+}, \ldots, j^{+},-\hat{K}_{2 \ldots j}^{+}\right) \\
& +A_{n-1}^{(0)}\left(4^{+}, 5^{+}, \ldots, n^{+}, \hat{1}^{-}, \hat{K}_{23}^{-}\right) \frac{i}{\left(K_{23}^{2}\right)^{2}} V_{3}^{(1)}\left(\hat{2}^{+}, 3^{+},-\hat{K}_{23}^{+}\right) \\
& \times\left(1+K_{23}^{2} \mathcal{S}^{(0)}\left(\hat{1}, \hat{K}_{23}^{+}, 4\right) \mathcal{S}^{(0)}\left(3,-\hat{K}_{23}^{-}, \hat{2}\right)\right)
\end{aligned}
$$

Know it works because results agree with Mahlon, hep-ph/9312276, though much shorter formulae are obtained from this relation

Solution to recursion relation

hep-ph/0505055

$$
A_{n}^{(1)}\left(1^{-}, 2^{+}, 3^{+}, \ldots, n^{+}\right)=\frac{i}{3} \frac{T_{1}+T_{2}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle},
$$

where

$$
\begin{aligned}
& T_{1}= \sum_{l=2}^{n-1} \frac{\langle 1 l\rangle}{} \frac{\langle 1(l+1)\rangle\left\langle 1^{-}\right| I K_{l, l+1} K_{(l+1) \ldots n}\left|1^{+}\right\rangle}{\langle l(l+1)\rangle}, \\
& T_{2}=\sum_{l=3}^{n-2} \sum_{p=l+1}^{n-1} \frac{\langle(l-1) l\rangle}{\left\langle 1^{-}\right| K_{(p+1) \ldots n} I K_{l \ldots p}\left|(l-1)^{+}\right\rangle\left\langle 1^{-}\right| K_{(p+1) \ldots n} K K_{l \ldots p}\left|l^{+}\right\rangle} \\
& \times \frac{\langle p(p+1)\rangle}{\left\langle 1^{-}\right| K_{2 \ldots(l-1)} I K_{l \ldots p}\left|p^{+}\right\rangle\left\langle 1^{-}\right| K_{2 \ldots(l-1)} I K_{l \ldots p}\left|(p+1)^{+}\right\rangle} \\
& \times\left\langle 1^{-}\right| K_{l \ldots p} K_{(p+1) \cdots n}\left|1^{+}\right\rangle^{3} \\
& \times \frac{\left\langle 1^{-}\right| K_{2 \ldots(l-1)}[\mathcal{F}(l, p)]^{2} K_{(p+1) \ldots n}\left|1^{+}\right\rangle}{s_{l \ldots p}} . \\
& \mathcal{F}(l, p)=\sum_{i=l}^{p-1} \sum_{m=i+1}^{p} k_{i} K_{m}
\end{aligned}
$$

External fermions too

hep-ph/0505055
Can similarly write down recursion relations for the finite, cut-free amplitudes with 2 external fermions:

and the solutions are just as compact

Loop amplitudes with cuts

- Recently extended same recursive technique (combined with unitarity) to loop amplitudes with cuts (hep-ph/0507005)
- Here rational-function terms contain
"spurious singularities", e.g. $\sim \frac{\ln (r)+1-r}{(1-r)^{2}}, \quad r=s_{2} / s_{1}$
- accounting for them properly yields simple "overlap diagrams" in addition to recursive diagrams
- No loop integrals required to bootstrap the rational functions from the cuts and lower-point amplitudes
- Tested method on 5-point amplitudes, used it to compute

$$
A_{6}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}, 6^{+}\right), A_{7}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}, 6^{+}, 7^{+}\right)
$$

Conclusions

- MHV rules, and especially on-shell recursion relations a very efficient way to compute multi-leg tree amplitudes in gauge theory
- Development a spinoff from twistor string theory
- Also much progress on loops in supersymmetric theories using (generalized) unitarity
- Quite recently, new loop amplitudes in QCD, needed for colliders, are beginning to fall to twistor-inspired recursive approaches
- Prospects look very good for attacking a wide range of multi-parton processes in this way

Some other reviews

- V.V. Khoze, hep-th/0408233
- F. Cachazo, P. Svrcek, hep-th/0504194 (Trieste lectures)
- N. Glover, talk at SUSY2005
http://susy-2005.dur.ac.uk/PLENARY/WED/GLOVERsusy.pdf

March of the n-gluon helicity amplitudes

n_{+}positive-helicity gluons
n_{-}negative-helicity gluons

$$
n=n_{+}+n_{-} \geq 4
$$

$$
n_{+} \geq n_{-} \text {by parity }
$$

At 1-loop, QCD decomposable into
$N=4 S Y M, N=1$ chiral, scalar contributions

March of the tree amplitudes

March of the 1-loop amplitudes

March of the 2-loop amplitudes

March of the 3-loop amplitudes

Fermionic solutions

$$
A_{n}^{L-s}\left(1_{f}^{-}, 2^{+}, \ldots, j_{f}^{+}, \ldots, n^{+}\right)=\frac{i}{2} \frac{\left.\langle 1 j\rangle \sum_{l=3}^{n-1}\left\langle 1^{-}\right| \not K_{2 \ldots l}\left|k_{l}\right| 1^{+}\right\rangle}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$ and

$$
A_{n}^{s}\left(j_{f}^{+}\right)=\frac{i}{3} \frac{S_{1}+S_{2}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle},
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{l=j+1}^{n-1} \frac{\langle j l\rangle\langle 1(l+1)\rangle\left\langle 1^{-}\right| K_{l, l+1} K_{(l+1) \cdots n}\left|1^{+}\right\rangle}{\langle l(l+1)\rangle}, \\
& S_{2}=\sum_{l=j+1}^{n-2} \sum_{p=l+1}^{n-1} \frac{\langle(l-1) l\rangle}{\left\langle 1^{-}\right| K_{(p+1) \ldots n} K_{l \ldots p}\left|(l-1)^{\dagger}\right\rangle\left\langle 1^{-}\right| K_{(p+1) \ldots n} K K_{l \ldots p}\left|l^{+}\right\rangle} \\
& \times \frac{\langle p(p+1)\rangle}{\left\langle 1^{-}\right| K_{2 \ldots(l-1)}^{K} / K_{l \ldots p}\left|p^{+}\right\rangle\left\langle 1^{-}\right| K_{2 \ldots(l-1)} I K_{l \ldots p}\left|(p+1)^{+}\right\rangle} \\
& \times\left\langle 1^{-}\right| K_{l \ldots p} K_{(p+1) \ldots n}\left|1^{+}\right\rangle^{2}\left\langle j^{-}\right| K_{l \ldots p} K_{(p+1) \ldots n}\left|1^{+}\right\rangle \\
& \times \frac{\left\langle 1^{-}\right| K_{2 \ldots(l-1)}[\mathcal{F}(l, p)]^{2} \mathscr{K}_{(p+1) \ldots n}\left|1^{+}\right\rangle}{s_{l \ldots p}}, \\
& \mathcal{F}(l, p)=\sum_{i=l}^{p-1} \sum_{m=i+1}^{p} k_{i} k_{m}
\end{aligned}
$$

