Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections

Georg Weiglein

IPPP Durham

Snowmass, 08/2005

Based on collaboration with J. Haestier, S. Heinemeyer, D. Stöckinger, hep-ph/0508139

- 1. Introduction
- 2. Evaluation of the relevant contributions
- 3. Numerical results
- 4. Estimate of remaining uncertainties from unknown higher-orders
- 5. Conclusions

1. Introduction

EW precision data: $M_{\rm Z}, M_{\rm W}, \sin^2 \theta_{\rm eff}^{\rm lept}, \dots$ Theory: SM, MSSM, ...

Test of theory at quantum level: sensitivity to loop corrections

Indirect constraints on unknown parameters: $M_{\rm H}$, $m_{\tilde{t}}$, ...

Effects of "new physics"?

Theoretical predictions for $M_{ m W}$, $\sin^2 heta_{ m eff}$:

Comparison of prediction for muon decay with experiment (Fermi constant G_{μ})

 \Rightarrow Theo. prediction for $M_{\rm W}$ in terms of $M_{\rm Z}$, α , G_{μ} , $\Delta r(m_{\rm t}, m_{\tilde{\rm t}}, \ldots)$

Effective couplings at the Z resonance:

$$\Rightarrow \quad \sin^2 \theta_{\text{eff}} = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_V}{g_A} \right) = \left(1 - \frac{M_W^2}{M_Z^2} \right) \operatorname{Re} \kappa_l (s = M_Z^2)$$

Leading contributions to precison observables

SM result for M_W , one-loop: [A. Sirlin '80], [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_{\text{W}}^2}{s_{\text{W}}^2} \Delta \rho + \Delta r_{\text{rem}}(M_{\text{H}})$$
$$\sim \log \frac{M_{\text{Z}}}{m_f} \sim m_{\text{t}}^2$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

Leading contributions to M_W , $\sin^2 \theta_{eff}$, ... from mass splitting between isospin doublet fields enter via

$$\Delta \rho = \frac{\Sigma_{\rm Z}(0)}{M_{\rm Z}^2} - \frac{\Sigma_{\rm W}(0)}{M_{\rm W}^2}$$
$$\Rightarrow \quad \Delta M_{\rm W} \approx \frac{M_{\rm W}}{2} \frac{c_{\rm W}^2}{c_{\rm W}^2 - s_{\rm W}^2} \Delta \rho, \quad \Delta \sin^2 \theta_{\rm eff} \approx -\frac{c_{\rm W}^2 s_{\rm W}^2}{c_{\rm W}^2 - s_{\rm W}^2} \Delta \rho$$

 $(\mathbf{0})$

 ∇ (0)

Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 - p.4

Theoretical uncertainties: current status

From experimental errors of input parameters

 $\delta m_{\rm t} = 2.9 \,\,{\rm GeV} \Rightarrow \Delta M_{\rm W}^{\rm para} \approx 18 \,\,{\rm MeV}, \quad \Delta \sin^2 \theta_{\rm eff}^{\rm para} \approx 9 \times 10^{-5}$

Theoretical uncertainties: current status

From experimental errors of input parameters

 $\delta m_{\rm t} = 2.9 \ {\rm GeV} \Rightarrow \Delta M_{\rm W}^{\rm para} \approx 18 \ {\rm MeV}, \quad \Delta \sin^2 \theta_{\rm eff}^{\rm para} \approx 9 \times 10^{-5}$

From unknown higher-order corrections ("intrinsic")

SM: Complete 2-loop result + leading higher-order corrections known for M_W , complete 2-loop fermionic corr. + leading higher-order corrections known for $\sin^2 \theta_{eff}$

⇒ Remaining uncertainties: [M. Awramik, M. Czakon, A. Freitas, G.W. '03, '04]

 $\Delta M_{\rm W}^{\rm intr} \approx 4 \,\,{\rm MeV}, \quad \Delta \sin^2 \theta_{\rm eff}^{\rm intr} \approx 5 \times 10^{-5}$

Higher-order corrections in the MSSM

Only known higher-order SUSY corrections to $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$:

- $\mathcal{O}(\alpha \alpha_{s})$ corrections to $\Delta \rho$ (+ gluonic corrections to Δr) [*A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. W. '97*] [*S. Heinemeyer, W. Hollik, G. W. '98*]
- $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ Yukawa corrections to $\Delta \rho$ in limit $M_{\rm SUSY} \rightarrow \infty$ (SUSY loop contributions decouple) [S. Heinemeyer, G. W. '02]
 - ⇒ well approximated by SM contribution
 - ⇒ SUSY loop contribution potentially larger (no SM counterpart)

⇒ Intrinsic theoretical uncertainties can be much larger than in the SM Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 – p.6

Two-loop Yukawa corrections to electroweak precision observables in the MSSM

Calculation of complete $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ Yukawa corrections to $\Delta \rho$ in the MSSM:

[J. Haestier, S. Heinemeyer, D. Stöckinger, G. W. '05]

- quark loops with Higgs exchange,
- squark loops with Higgs exchange,
- quark/squark loops with Higgsino exchange

Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 – p.7

The quantity $\Delta \rho$ is not a physical observable

The quantity $\Delta \rho$ is not a physical observable

 \Rightarrow Evaluation of $\Delta \rho$ makes only sense for contributions that form a complete subset of leading corrections to the precision observables

The quantity $\Delta \rho$ is not a physical observable

 \Rightarrow Evaluation of $\Delta \rho$ makes only sense for contributions that form a complete subset of leading corrections to the precision observables

Example: one-loop top/bottom contributions in the SM

The quantity $\Delta \rho$ is not a physical observable

- \Rightarrow Evaluation of $\Delta \rho$ makes only sense for contributions that form a complete subset of leading corrections to the precision observables
- Example: one-loop top/bottom contributions in the SM
- Counter example: one-loop bosonic contributions in the SM; contribution to $\Delta \rho$ is neither UV-finite nor gauge-independent

The quantity $\Delta \rho$ is not a physical observable

- \Rightarrow Evaluation of $\Delta \rho$ makes only sense for contributions that form a complete subset of leading corrections to the precision observables
- Example: one-loop top/bottom contributions in the SM
- Counter example: one-loop bosonic contributions in the SM; contribution to $\Delta \rho$ is neither UV-finite nor gauge-independent
- ⇒ Need a consistent prescription for extracting leading higher-order contributions

The gauge-less limit

Yukawa couplings of top and bottom quarks:

$$y_t = \frac{\sqrt{2} m_t}{v \sin \beta}, \quad y_b = \frac{\sqrt{2} m_b}{v \cos \beta}$$

⇒ leading Yukawa corrections can be obtained in gauge-less limit:

$$g_{1,2} \to 0, \quad M_{W}^{2} = \frac{1}{2}g_{2}^{2}v^{2} \to 0, \quad M_{Z}^{2} = \frac{1}{2}(g_{1}^{2} + g_{2}^{2})v^{2} \to 0,$$

 $c_{W} \equiv \frac{M_{W}}{M_{Z}}: \text{ fixed}, \quad v: \text{ fixed}$

The gauge-less limit

Yukawa couplings of top and bottom quarks:

$$y_t = \frac{\sqrt{2} m_t}{v \sin \beta}, \quad y_b = \frac{\sqrt{2} m_b}{v \cos \beta}$$

⇒ leading Yukawa corrections can be obtained in gauge-less limit:

$$g_{1,2} \to 0, \quad M_{W}^{2} = \frac{1}{2}g_{2}^{2}v^{2} \to 0, \quad M_{Z}^{2} = \frac{1}{2}(g_{1}^{2} + g_{2}^{2})v^{2} \to 0,$$

 $c_{W} \equiv \frac{M_{W}}{M_{Z}}: \text{ fixed}, \quad v: \text{ fixed}$

⇒ in MSSM, 1-loop: only fermion/sfermion contributions Higgs sector of general 2HDM contributes contribution in MSSM vanishes due to symmetry relations

Two-loop Yukawa corrections: $\mathcal{O}(\alpha_f^2)$

Gauge-less limit at 2-loop yields 2-loop Yukawa corr. $\mathcal{O}(\alpha_f^2)$

 $\mathcal{O}(\alpha_f^2)$ contributions to $\Delta \rho$ are the only corrections at this order to $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$

Two-loop Yukawa corrections: $\mathcal{O}(\alpha_f^2)$

Gauge-less limit at 2-loop yields 2-loop Yukawa corr. $O(\alpha_f^2)$

 $\mathcal{O}(\alpha_f^2)$ contributions to $\Delta \rho$ are the only corrections at this order to $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$

In the SM $O(\alpha_t^2)$ corrections were first obtained for special case $M_{\rm H} = 0$: [J. van der Bij, F. Hoogeveen '87]

$$\Delta \rho_{2-\text{loop}|M_{\text{H}}=0}^{\text{SM},\alpha_{t}^{2}} = 3 \frac{G_{\mu}^{2}}{128\pi^{4}} m_{t}^{4} (19 - 2\pi^{2})$$

⇒ very small correction because of accidental cancellation of terms in the bracket

Two-loop Yukawa corrections: $\mathcal{O}(\alpha_f^2)$

Gauge-less limit at 2-loop yields 2-loop Yukawa corr. $O(\alpha_f^2)$

 $\mathcal{O}(\alpha_f^2)$ contributions to $\Delta \rho$ are the only corrections at this order to $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$

In the SM $O(\alpha_t^2)$ corrections were first obtained for special case $M_{\rm H} = 0$: [J. van der Bij, F. Hoogeveen '87]

$$\Delta \rho_{2-\text{loop}|M_{\text{H}}=0}^{\text{SM},\alpha_{t}^{2}} = 3 \frac{G_{\mu}^{2}}{128\pi^{4}} m_{t}^{4} (19 - 2\pi^{2})$$

⇒ very small correction because of accidental cancellation of terms in the bracket

SM $\mathcal{O}(\alpha_t^2)$ result for arbitrary $M_{\rm H}$ [*R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere '92*], [*J. Fleischer, O. Tarasov, F. Jegerlehner '93*] \Rightarrow much bigger correction for realistic values of $M_{\rm H}^{\rm SM}$

Higgs sector:

$$M_{\rm H^{\pm}}^2 = M_{\rm H}^2 = M_{\rm A}^2, \quad \sin \alpha = -\cos \beta, \quad \cos \alpha = \sin \beta$$

Higgs sector:

$$M_{\rm H^{\pm}}^2 = M_{\rm H}^2 = M_{\rm A}^2, \quad \sin \alpha = -\cos \beta, \quad \cos \alpha = \sin \beta$$

 $M_{\rm h} = 0$

Higgs sector:

$$M_{\rm H^{\pm}}^2 = M_{\rm H}^2 = M_{\rm A}^2, \quad \sin \alpha = -\cos \beta, \quad \cos \alpha = \sin \beta$$

 $M_{\rm h} = 0$

 \Rightarrow investigate in how far dependence on $M_{\rm h}$ can be kept in a consistent way

Higgs sector:

$$M_{\mathrm{H}^{\pm}}^2 = M_{\mathrm{H}}^2 = M_{\mathrm{A}}^2, \quad \sin \alpha = -\cos \beta, \quad \cos \alpha = \sin \beta$$

 $M_{\mathrm{h}} = 0$

 \Rightarrow investigate in how far dependence on $M_{\rm h}$ can be kept in a consistent way

Higgsino sector:

Diagonal mass matrices of charginos, neutralinos simplify to

$$m_{\tilde{\chi}_i^{\pm}} = (0, +\mu), \quad m_{\tilde{\chi}_i^0} = (0, 0, +\mu, -\mu)$$

$M_{\rm h}$ dependence: pure fermion contributions

Full $M_{\rm h}$ dependence can be kept (i.e. can use true MSSM value for $M_{\rm h}$) in pure fermion contributions of class (q):

(q)

t/b loops with Higgs and Goldstoneboson exchange[S. Heinemeyer, G. W. '02]

Reason: diagrams + counterterm contribution of class (q) correspond to a special case of a general 2HDM (where $M_{\rm h}$ is a free parameter) [*J. Haestier, S. Heinemeyer, D. Stöckinger, G. W. '05*]

Mass matrices in the stop/sbottom sector:

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} M_{\tilde{t}_{L}}^{2} + m_{t}^{2} + \cos 2\beta \left(\frac{1}{2} - \frac{2}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{t}X_{t} \\ m_{t}X_{t} & M_{\tilde{t}_{R}}^{2} + m_{t}^{2} + \frac{2}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix},$$
$$\mathcal{M}_{\tilde{b}}^{2} = \begin{pmatrix} M_{\tilde{b}_{L}}^{2} + m_{b}^{2} + \cos 2\beta \left(-\frac{1}{2} + \frac{1}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{b}X_{b} \\ m_{b}X_{b} & M_{\tilde{b}_{R}}^{2} + m_{b}^{2} - \frac{1}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix}$$

SU(2) gauge invariance requires: $M_{\tilde{t}_L}^2 = M_{\tilde{b}_L}^2$

Mass matrices in the stop/sbottom sector:

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} M_{\tilde{t}_{L}}^{2} + m_{t}^{2} + \cos 2\beta \left(\frac{1}{2} - \frac{2}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{t}X_{t} \\ m_{t}X_{t} & M_{\tilde{t}_{R}}^{2} + m_{t}^{2} + \frac{2}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix},$$
$$\mathcal{M}_{\tilde{b}}^{2} = \begin{pmatrix} M_{\tilde{b}_{L}}^{2} + m_{b}^{2} + \cos 2\beta \left(-\frac{1}{2} + \frac{1}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{b}X_{b} \\ m_{b}X_{b} & M_{\tilde{b}_{R}}^{2} + m_{b}^{2} - \frac{1}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix}$$

SU(2) gauge invariance requires: $M_{\tilde{t}_L}^2 = M_{\tilde{b}_L}^2$

 \Rightarrow relation between $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, $\theta_{\tilde{t}}$, $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$, $\theta_{\tilde{b}}$

Mass matrices in the stop/sbottom sector:

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} M_{\tilde{t}_{L}}^{2} + m_{t}^{2} + \cos 2\beta \left(\frac{1}{2} - \frac{2}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{t}X_{t} \\ m_{t}X_{t} & M_{\tilde{t}_{R}}^{2} + m_{t}^{2} + \frac{2}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix},$$
$$\mathcal{M}_{\tilde{b}}^{2} = \begin{pmatrix} M_{\tilde{b}_{L}}^{2} + m_{b}^{2} + \cos 2\beta \left(-\frac{1}{2} + \frac{1}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{b}X_{b} \\ m_{b}X_{b} & M_{\tilde{b}_{R}}^{2} + m_{b}^{2} - \frac{1}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix}$$

SU(2) gauge invariance requires: $M_{\tilde{t}_L}^2 = M_{\tilde{b}_L}^2$

 \Rightarrow relation between $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, $\theta_{\tilde{t}}$, $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$, $\theta_{\tilde{b}}$

 \Rightarrow not all parameters can be renormalised independently

Mass matrices in the stop/sbottom sector:

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} M_{\tilde{t}_{L}}^{2} + m_{t}^{2} + \cos 2\beta \left(\frac{1}{2} - \frac{2}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{t}X_{t} \\ m_{t}X_{t} & M_{\tilde{t}_{R}}^{2} + m_{t}^{2} + \frac{2}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix},$$
$$\mathcal{M}_{\tilde{b}}^{2} = \begin{pmatrix} M_{\tilde{b}_{L}}^{2} + m_{b}^{2} + \cos 2\beta \left(-\frac{1}{2} + \frac{1}{3}s_{W}^{2}\right)M_{Z}^{2} & m_{b}X_{b} \\ m_{b}X_{b} & M_{\tilde{b}_{R}}^{2} + m_{b}^{2} - \frac{1}{3}\cos 2\beta s_{W}^{2}M_{Z}^{2} \end{pmatrix}$$

SU(2) gauge invariance requires: $M_{\tilde{t}_L}^2 = M_{\tilde{b}_L}^2$

 \Rightarrow relation between $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, $\theta_{\tilde{t}}$, $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$, $\theta_{\tilde{b}}$

\Rightarrow not all parameters can be renormalised independently

 \Rightarrow choose $\delta m_{\tilde{b}_1}^2$ as dependent counterterm

 $\Rightarrow \delta m_{\tilde{b}_1}^2 \Big|_{\text{symm}} = f(\delta m_{\tilde{t}_1}, \delta m_{\tilde{t}_2}, \delta \theta_{\tilde{t}}, \delta m_{\tilde{b}_2}, \delta \theta_{\tilde{b}}, \delta m_t, \delta m_t)$ Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 – p.13

Total result for $\Delta \rho$

On-shell renormalisation of the other parameters:

$$\delta m_{\tilde{f}_i}^2 = \operatorname{Re} \Sigma_{\tilde{f}_i}(m_{\tilde{f}_i}^2) \qquad \text{for } \tilde{f}_i = \tilde{t}_{1,2}, \tilde{b}_2$$
$$\delta \theta_{\tilde{f}} = \frac{\operatorname{Re} \Sigma_{\tilde{f}_1 \tilde{f}_2}(m_{\tilde{f}_1}^2) + \operatorname{Re} \Sigma_{\tilde{f}_1 \tilde{f}_2}(m_{\tilde{f}_2}^2)}{2(m_{\tilde{f}_1}^2 - m_{\tilde{f}_2}^2)} \qquad \text{for } \tilde{f} = \tilde{t}, \tilde{b}$$

Total result for $\Delta \rho$

On-shell renormalisation of the other parameters:

$$\delta m_{\tilde{f}_i}^2 = \operatorname{Re} \Sigma_{\tilde{f}_i}(m_{\tilde{f}_i}^2) \qquad \text{for } \tilde{f}_i = \tilde{t}_{1,2}, \tilde{b}_2$$
$$\delta \theta_{\tilde{f}} = \frac{\operatorname{Re} \Sigma_{\tilde{f}_1 \tilde{f}_2}(m_{\tilde{f}_1}^2) + \operatorname{Re} \Sigma_{\tilde{f}_1 \tilde{f}_2}(m_{\tilde{f}_2}^2)}{2(m_{\tilde{f}_1}^2 - m_{\tilde{f}_2}^2)} \qquad \text{for } \tilde{f} = \tilde{t}, \tilde{b}$$

 \Rightarrow total result for $\Delta \rho$ can be written as

$$\Delta \rho^{(q,\tilde{q},\tilde{H})} = \Delta \rho_{\text{MSSM}}^{(q)} + \Delta \rho_{\text{MSSM, full OS}}^{(\tilde{q},\tilde{H})} + \Delta m_{\tilde{b}_1}^2 \partial_{m_{\tilde{b}_1}^2} \Delta \rho_{1-\text{loop}}^{\text{SUSY}},$$

where $\Delta m_{\tilde{b}_1}^2 = \delta m_{\tilde{b}_1}^2 \big|_{\text{symm}} - \delta m_{\tilde{b}_1}^2 \big|_{\text{OS}}, \quad \delta m_{\tilde{b}_1}^2 \big|_{\text{OS}} = \text{Re} \Sigma_{\tilde{b}_1} (m_{\tilde{b}_1}^2)$

Alternative renormalisation scheme: $\overline{\rm DR}$ ren. for soft SUSY-breaking parameters in stop/sbottom sector

$M_{\rm h}$ dependence: sfermion and higgsino contributions, $\Delta \rho^{(\tilde{q},\tilde{H})}$

$\Delta \rho_{\text{MSSM, full OS}}^{(\tilde{q}, \tilde{H})}$: full M_{h} dependence can be kept

$\Delta m_{\tilde{b}_1}^2 \partial_{m_{\tilde{b}_1}^2} \Delta \rho_{1-\text{loop}}^{\text{SUSY}}$: needs to be evaluated in full gauge-less limit, i.e. for $M_{\text{h}} = 0$

\Rightarrow treat $M_{\rm h}$ -dependence of $\Delta \rho^{(\tilde{q},\tilde{H})}$ as theoretical uncertainty in the following

3. Numerical results

 $M_{\rm h}$ -dependence of $\Delta \rho^{(\tilde{q},\tilde{H})}$:

Shift induced by $\Delta \rho^{(\tilde{q},\tilde{H})}$ in $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$:

"extreme scenario", where $M_{\rm h}$ dependence of $\Delta \rho^{(\tilde{q},\tilde{H})}$ is particularly large

$\Rightarrow M_{\rm h}$ -dependence of squark and higgsino contributions induces shift of up to +5 MeV in $M_{\rm W}$ and -3×10^{-5} to $\sin^2 \theta_{\rm eff}$

Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 - p.16

Shifts induced in $M_{
m W}$ and $\sin^2 heta_{
m eff}$ by two-loop Yukawa

corrections as function of mixing in scalar top sector

 $\Rightarrow \text{Corrections up to } \Delta M_{W} \approx +8 \text{ MeV}, \ \Delta \sin^{2} \theta_{\text{eff}} \approx -4 \times 10^{-5}$ from SUSY loops, can be as large as SM quark loops
Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections. Georg Weiglein. Snowmass 08/2005 – p.17

Result in SPS 1a scenario: 2-loop on-shell and 2-loop DR

result relative to 1-loop result with \overline{DR} parameters

Shifts induced by squark and higgsino corrections $M_{\rm SUSY}$, $A_{\rm t}$, $A_{\rm b}$, μ , $\mu^{\rm DR}$ varied using common scale factor 7 SPS1a, relative to 1-loop DR 1-loop OS 6 2-loop DR -3 2-loop OS 5 ∆M_w [MeV] З 2 -1 1 200 600 300 400 500 700 800 900 1000 M_{SUSY} [GeV]

 \Rightarrow Corrections up to $\Delta M_{\rm W} \approx +6$ MeV, $\Delta \sin^2 \theta_{\rm eff} \approx -3 \times 10^{-5}$ large reduction of scheme dependence

Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 – p.18

Yukawa corrections vs. $\mathcal{O}(\alpha \alpha_s)$ corrections to M_W , $\sin^2 \theta_{eff}$ as

function of $M_{\rm SUSY}$ for three SPS scenarios

 \Rightarrow Corrections have similar size, large compensations for small M_{SUSY}

Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 – p.19

Electroweak precision tests: SM vs. MSSM

Electroweak precision tests: SM vs. MSSM

Prediction for $M_{\rm W}$ in the SM and the MSSM ($m_{\rm t} = 172.7 \pm 2.9 \,\,{\rm GeV}$): [A. Djouadi, P. Gambino, S. Heinemeyer, 80.70 experimental errors 68% CL: W. Hollik, C. Jünger, G. W. '97 LEP2/Tevatron (today) light SUSY Tevatron/LHC S. Heinemeyer, W. Hollik, G. W. '98 80.60 ILC/GigaZ S. Heinemeyer, G. W. '02 MSSN M_w [GeV] 80.50 Theaty SUS 80.40 M_H = 113 GeV. 80.30 SM _ 400 Ge1 MSSM both models 80.20 Heinemeyer, Weiglein '05 SM: $M_{\rm H}$ varied 165 170 175 160 180 185 190 m, [GeV] MSSM: SUSY parameters varied

4. Estimate of remaining uncertainties from unknown higher-orders

Theoretical evaluation of precision observables is more advanced in the SM than in the MSSM

 $\Rightarrow \text{ Write MSSM prediction for observable } O$ $(O = M_{\rm W}, \sin^2 \theta_{\rm eff}, \dots) \text{ as}$

 $O_{\rm MSSM} = O_{\rm SM} + O_{\rm MSSM-SM}$

 \Rightarrow takes all known SM corrections into account

4. Estimate of remaining uncertainties from unknown higher-orders

Theoretical evaluation of precision observables is more advanced in the SM than in the MSSM

 $\Rightarrow \text{ Write MSSM prediction for observable } O$ ($O = M_W, \sin^2 \theta_{eff}, \ldots$) as

 $O_{\rm MSSM} = O_{\rm SM} + O_{\rm MSSM-SM}$

⇒ takes all known SM corrections into account

⇒ higher-order uncertainties reduce to SM uncertainties in decoupling limit (where $O_{MSSM-SM} \rightarrow 0$)

4. Estimate of remaining uncertainties from unknown higher-orders

Theoretical evaluation of precision observables is more advanced in the SM than in the MSSM

 $\Rightarrow \text{ Write MSSM prediction for observable } O$ ($O = M_W, \sin^2 \theta_{eff}, \ldots$) as

 $O_{\rm MSSM} = O_{\rm SM} + O_{\rm MSSM-SM}$

⇒ takes all known SM corrections into account

⇒ higher-order uncertainties reduce to SM uncertainties in decoupling limit (where $O_{MSSM-SM} \rightarrow 0$)

⇒ Need estimate of further uncertainties from SUSY loop corrections Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections, Georg Weiglein, Snowmass 08/2005 – p.22

Estimate of uncertainties from SUSY loop corrections depending on $M_{\rm SUSY}$

- Electroweak 2-loop corrections beyond the leading Yukawa corrections:
 - assume ratio of subleading ew 2-loop corr. to 2-loop
 Yukawa corr. is the same in the MSSM as in the SM
 - $M_{\rm h}$ dependence of squark and higgsino contributions
- O(αα_s) corrections beyond the Δρ approximation:
 assume ratio of contribution entering via Δρ to full result is the same as in the SM

Estimate of uncertainties from SUSY loop corrections depending on M_{SUSY}

• $\mathcal{O}(\alpha \alpha_s^2)$ corrections:

- assume ratio of supersymmetric $\mathcal{O}(\alpha \alpha_s^2)$ contributions to $\mathcal{O}(\alpha \alpha_s)$ supersymmetric contributions is the same as for corresponding corrections in the SM
- geometric progression from lower orders: assume ratio is the same as of $\mathcal{O}(\alpha \alpha_s)$ supersymmetric contributions to $\mathcal{O}(\alpha)$ supersymmetric contributions
- variation of renormalisation scale of $\alpha_s(\mu^{\overline{\text{DR}}})$ entering the $\mathcal{O}(\alpha \alpha_s)$ result according to $m_t/2 \le \mu^{\overline{\text{DR}}} \le 2m_t$

Estimate of uncertainties from SUSY loop corrections depending on $M_{\rm SUSY}$

• $\mathcal{O}(\alpha^2 \alpha_s)$ corrections:

- assume ratio of supersymmetric $\mathcal{O}(\alpha^2 \alpha_s)$ contributions to $\mathcal{O}(\alpha^2)$ leading Yukawa supersymmetric contributions is the same as for corresponding corrections in the SM
- geometric progression from lower orders: assume ratio is the same as of $\mathcal{O}(\alpha \alpha_s)$ supersymmetric contributions to $\mathcal{O}(\alpha)$ supersymmetric contributions
- change value of m_t in result for 2-loop supersymmetric Yukawa corrections from m_t^{OS} to $m_t(m_t) = m_t^{OS}/(1 + 4/(3\pi) \alpha_s(m_t))$
- Electroweak three-loop corrections:

renormalisation scheme dependence of result for 2-loop supersymmetric Yukawa corrections

Resulting estimates for uncertainty in M_W (in MeV) for different values of M_{SUSY}

Values obtained for SPS 1a, SPS 1b, SPS 5 (largest value taken as estimate):

$M_{\rm SUSY}$	<500 GeV		500 GeV			1000 GeV		
$\mathcal{O}(lpha^2)$ sublead.	6.0		2.0			0.8		
$\mathcal{O}(\alpha \alpha_s)$ sublead.	1.8	0.9			0.5			
$\mathcal{O}(lpha lpha_s^2)$	3.0, 5.3,	1.5	1.4,	1.1,	0.7	0.9,	2.2,	0.5
$\mathcal{O}(\alpha^2 \alpha_s)$	1.5, 2.2,	1.4	0.6,	0.8,	0.4	0.2,	0.2,	0.2
$\mathcal{O}(lpha^3)$	0.3			0.3			0.3	

Estimates for uncertainties in M_W **and** $\sin^2 \theta_{eff}$ from unknown higher-order SUSY contrib.

$$\delta M_{\rm W} = 8.5 \text{ MeV} \text{ for } M_{\rm SUSY} = 200 \text{ GeV}$$

$$\delta M_{\rm W} = 2.7 \ {\rm MeV} \ {\rm for} \ M_{\rm SUSY} = 500 \ {\rm GeV}$$

$$\delta M_{\rm W} = 2.4 \text{ MeV} \text{ for } M_{\rm SUSY} = 1000 \text{ GeV}$$

$$\delta \sin^2 \theta_{\text{eff}} = 4.7 \times 10^{-5} \text{ for } M_{\text{SUSY}} = 200 \text{ GeV}$$

$$\delta \sin^2 \theta_{\text{eff}} = 1.5 \times 10^{-5} \text{ for } M_{\text{SUSY}} = 500 \text{ GeV}$$

$$\delta \sin^2 \theta_{\text{eff}} = 1.3 \times 10^{-5} \text{ for } M_{\text{SUSY}} = 1000 \text{ GeV}$$

Estimates for uncertainties in M_W **and** $\sin^2 \theta_{eff}$ from unknown higher-order SUSY contrib.

$$\delta M_{\rm W} = 8.5 \text{ MeV} \text{ for } M_{\rm SUSY} = 200 \text{ GeV}$$

$$\delta M_{\rm W} = 2.7 \ {\rm MeV} \ {\rm for} \ M_{\rm SUSY} = 500 \ {\rm GeV}$$

$$\delta M_{\rm W} = 2.4 \text{ MeV} \text{ for } M_{\rm SUSY} = 1000 \text{ GeV}$$

$$\delta \sin^2 \theta_{\text{eff}} = 4.7 \times 10^{-5} \text{ for } M_{\text{SUSY}} = 200 \text{ GeV}$$

$$\delta \sin^2 \theta_{\text{eff}} = 1.5 \times 10^{-5} \text{ for } M_{\text{SUSY}} = 500 \text{ GeV}$$

$$\delta \sin^2 \theta_{\text{eff}} = 1.3 \times 10^{-5} \text{ for } M_{\text{SUSY}} = 1000 \text{ GeV}$$

⇒ Total uncertainty including higher-order SM corrections:

 $\delta M_{\rm W} = (5-9) \,\,{\rm MeV}, \quad \delta \sin^2 \theta_{\rm eff} = (5-7) \times 10^{-5}$

• New result for 2-loop Yukawa corr. to $\Delta \rho$ in the MSSM: $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ contributions from SM fermions, sfermions, Higgs bosons and higgsinos

- New result for 2-loop Yukawa corr. to $\Delta \rho$ in the MSSM: $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ contributions from SM fermions, sfermions, Higgs bosons and higgsinos
- Corrections up to $\Delta M_{\rm W} = +8$ MeV, $\Delta \sin^2 \theta_{\rm eff} = -4 \times 10^{-5}$ can be as large as SM quark loop and SUSY $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections

- New result for 2-loop Yukawa corr. to $\Delta \rho$ in the MSSM: $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ contributions from SM fermions, sfermions, Higgs bosons and higgsinos
- Corrections up to $\Delta M_{\rm W} = +8$ MeV, $\Delta \sin^2 \theta_{\rm eff} = -4 \times 10^{-5}$ can be as large as SM quark loop and SUSY $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections
- Detailed estimates of remaining uncertainties of M_W and $\sin^2 \theta_{\text{eff}}$ from unknown higher-order contributions for different values of M_{SUSY} :

 $\delta M_{\rm W} = (5-9) \text{ MeV}, \ \delta \sin^2 \theta_{\rm eff} = (5-7) \times 10^{-5}$

- New result for 2-loop Yukawa corr. to $\Delta \rho$ in the MSSM: $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ contributions from SM fermions, sfermions, Higgs bosons and higgsinos
- Corrections up to $\Delta M_{\rm W} = +8$ MeV, $\Delta \sin^2 \theta_{\rm eff} = -4 \times 10^{-5}$ can be as large as SM quark loop and SUSY $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections
- Detailed estimates of remaining uncertainties of M_W and $\sin^2 \theta_{\text{eff}}$ from unknown higher-order contributions for different values of M_{SUSY} :

 $\delta M_{\rm W} = (5-9) \text{ MeV}, \ \delta \sin^2 \theta_{\rm eff} = (5-7) \times 10^{-5}$

⇒ Further efforts needed to reduce theor. uncertainties in the MSSM to the level achieved for the SM Electroweak Precision Observables in the MSSM: New Results on Two-Loop Yukawa Corrections. Georg Weiglein, Snowmass 08/2005 – 0.28