Merging Parton Showers with NLO QCD

Zoltán Nagy

Institute for Theoretical Physics University of Zürich

in collaboration with Dave Soper

Merging Parton Showers with NLO QCD - p. 1

INTRODUCTION

Why do we need NLO or higher order?

- We need accuracy.
- The strong coupling is big and the leading order predictions are very poor.
- The leading order results has very strong dependence on the arbitrary non-physical scales (renormalization and factorization)

Why do we need parton shower?

- We want more realistic final state.
- In the fix order calculations we are able to calculate processes only with few partons in the final state.
- But in the detector we see lots of hadrons.
- If we want more realistic picture we have to deal with the hadronization. The hadronization is long distance physics. We cannot calculate but we can "measure" it. It is universal.
- We need "bridge" between the short distance and long distance part. \implies Parton shower

BORN LEVEL CALCULATION

The Born level cross section is an *m*-parton phase space integral:

$$\sigma^{LO} = \int d\Gamma(\{p\}_m, Q) |M(\{p, f\}_m)|^2 F^{(m)}(p_1, .., p_m) + \mathcal{O}(\alpha_s^{m-1})$$

- Trivially no UV singularities. (No integral over infinite phase space.)
- No IR singularities from the phase space integral ensured by the $F^{(m)}$ measurement function.
- At this level the main task (challenge) is to calculate the matrix element squares.
 - the matrix element automatically generated up to $2 \rightarrow 6$ or even $2 \rightarrow 8$ (MADGRAPH, ALPGEN, HELAC, AMEGIC++,...)
 - plus automatic integration over the phase space (PHEGAS, MADEVENT, SHERPA,...)

PARTON SHOWER

Take the primary hard process (in e^+e^- annihilation it is the $e^+e^- \rightarrow q\bar{q}$) and calculate the rest of the event by parton shower algorithm

$$\sigma^{LO,S} = \int d\Gamma(\{p\}_2, Q) |M(\{p, f\}_2)|^2 (S(\{p, f\}_2) |F) (1 + \mathcal{O}(\alpha_s L))$$

- Based on that physical picture that every parton produce a jet (jet: A "spray" of collinear hadrons).
- In the collinear limit the QCD matrix element has factorization properties. This factorization property allows us to calculate the $(S(\{p, f\}_2)|F)$ recursively.
- There are several program available: APACIC++, ARIADNE, COJET, HERWIG(++), PYTHIA(++),...
- This is an all order expression but gives good approximation only at LL level. Out of this region the performance is very poor.

MATRIX ELEMENT + PARTON SHOWER

(CKKW: Catani-Krauss-Kuhn-Webber Method)

Defining the jet clustering sequence for a tree level *m*-parton process using the k_{\perp} jet algorithm, that is $d_2 > d_3 > \cdots > d_n > d_{ini}$, the cross section is given by

$$\sigma^{LO+S}[F] = \sum_{m=2}^{m_{\text{max}}} \tilde{\sigma}_m^{B+S}[F] ,$$

where

$$\tilde{\sigma}_{m}^{B+S}[F] = \int_{m} d\Gamma(\{p\}_{m}, Q) |M(\{p, f\}_{m})|^{2} \theta(d_{m} > d_{\text{ini}})$$
$$\times W_{m}(\{p, f\}_{m}) (S(\{p, f\}_{m}; d < d_{\text{ini}}) | F)$$

- The scale $d_{ini} > 0$ helps to keep away from the singular region in the hard matrix element. It is arbitrary but not zero.
- The $\theta(d_m > d_{ini})$ introduces large logarithms in the variable d_{ini} but they are cancelled at NLL level.
- This cancellation is ensured by the Sudakov reweighting and the vetoed shower.

NLO CROSS SECTIONS

To eliminate the IR singularities from the real part the best way is the dipole method:

$$\sigma^{NLO} = \int_m d\sigma^B + \int_{m+1} [d\sigma^R|_{\epsilon=0} - d\sigma^A|_{\epsilon=0}] + \int_m [d\sigma^V + \int_1 d\sigma^A]_{\epsilon=0}$$

massless case :S. Catani and M.H. Seymourmassive case :S. Catani S. Dittmaier, M.H. Seymour, Z. Trócsányi

The $d\sigma^A$ is a local counterterm for $d\sigma^R$ with same pointwise behaviour as $d\sigma^R$. Furthermore it is integrable in $d = 4 - 2\epsilon$ dimension over the single parton subspaces.

$$\sigma^{NLO} = \int_{m} d\sigma^{B} + \int_{m+1} [d\sigma^{R}|_{\epsilon=0} - \sum_{\text{dipoles}} d\sigma^{B} \otimes \boldsymbol{d}V|_{\epsilon=0}] + \int_{m} [d\sigma^{V} + d\sigma^{B} \otimes \boldsymbol{I}^{R}(\epsilon)]_{\epsilon=0}$$

where the $I(\epsilon)$ singular factor in the massless case is

$$\boldsymbol{I}^{R}(\epsilon) = -\frac{\alpha_{s}}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \sum_{j\neq i} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{\boldsymbol{T}_{i}^{2}} \left(\frac{\mu^{2}}{s_{ij}}\right)^{\epsilon} \left[\boldsymbol{T}_{i}^{2} \left(\frac{1}{\epsilon^{2}} - \frac{\pi^{2}}{3}\right) + \gamma_{i} \frac{1}{\epsilon} + \gamma_{i} + K_{i} + \mathcal{O}(\epsilon)\right]$$

NLO CROSS SECTIONS

To eliminate the IR singularities from the real part the best way is the dipole method:

$$\sigma^{NLO} = \int_m d\sigma^B + \int_{m+1} [d\sigma^R|_{\epsilon=0} - d\sigma^A|_{\epsilon=0}] + \int_m [d\sigma^V + \int_1 d\sigma^A]_{\epsilon=0}$$

massless case : S. Catani S. Dittmaier, M.H. Seymour, Z. Trócsányi

- several program: EKS, JETRAD, EVENT(2), EERAD, DISENT, DISASTER++, MEPJET, AYLEN/EMILIA, PHOX, ...
- in some case we can calculate up to $2 \rightarrow 3$ (NLOJET++, MCFM)
- some interesting process is computed but many of them still missing
- There is no automated program.

NLO + SHOWER

There are two other approches on the market:

- MC@NLO approach by Frixione, Webber and Nason
 - the method is not general, not Lorentz covariant
 - the matching is **not exact**
 - it is worked out for the processes with no final state colored particle or only with massive quarks.
 - The method is specific to a particular Monte Carlo implementation (HERWIG).
- By M. Krämer and D.E. Soper
 - It is worked out only for $e^+e^- \rightarrow 3$ jets.
 - It is based on a fully numeric NLO method which is also specific to the $e^+e^- \rightarrow 3$ jets process.
 - Lis not Lorentz covariant.
 - But the basic idea is very general and it gives exact matching.
 - L It can work together with any shower program.
- There is no algorithm defined to achive the "NLO matrix element + Parton Shower" project (CKKW@NLO).

HIGHLIGHTS OF OUR METHOD

In our approach we want the most of all, to have an algorithm that can be used in a reasonably straightforward manner:

- Lorentz covariance, easy to implement
- Q The first hardest step of the shower is included in the NLO program and the subsequent shower is calculated by the user's favorite shower algorithm ⇒ not specific to a particular MC implementation
- Q We have full control on the first step in every singular regions ⇒ exact matching
- The algorithm can deal with any number of the colored particles in the final and initial states.
- We implement the CKKW matching scheme at NLO level.

NLO + PARTON SHOWER

In the CKKW matching scheme the cross section is sum of the partial cross sections:

$$\sigma^{S}[F] = \sum_{m=2}^{m_{\rm NLO}} \sigma_m^{NLO+S}[F] + \sum_{m=m_{\rm NLO}+1}^{m_{\rm max}} \tilde{\sigma}_m^{B+S}[F]$$

At NLO level one term in the CKKW cross section should be

$$\sigma_m^{NLO+S}[F] = \sigma_m^{B+S}[F] + \sigma_m^{R+S}[F] + \sigma_m^{V+S}[F]$$

The simplified Born term should be

$$\tilde{\sigma}_{m}^{B+S}[F] = \sum_{\{f\}_{m}} \frac{1}{m!} \int d\Gamma(\{p\}_{m}; Q) \,\theta(d_{m} > d_{\text{ini}}) \, W_{m}(\{p, f\}_{m}) \\ \times \left| \mathcal{M}(\{p, f\}_{m}) \right|^{2} \left(S(\{\hat{p}, \hat{f}\}_{m}; d < d_{\text{ini}}) \big| F \right)$$

NLO + PARTON SHOWER

In the CKKW matching scheme the cross section is sum of the partial cross sections:

$$\sigma^{S}[F] = \sum_{m=2}^{m_{\rm NLO}} \sigma_m^{NLO+S}[F] + \sum_{m=m_{\rm NLO}+1}^{m_{\rm max}} \tilde{\sigma}_m^{B+S}[F]$$

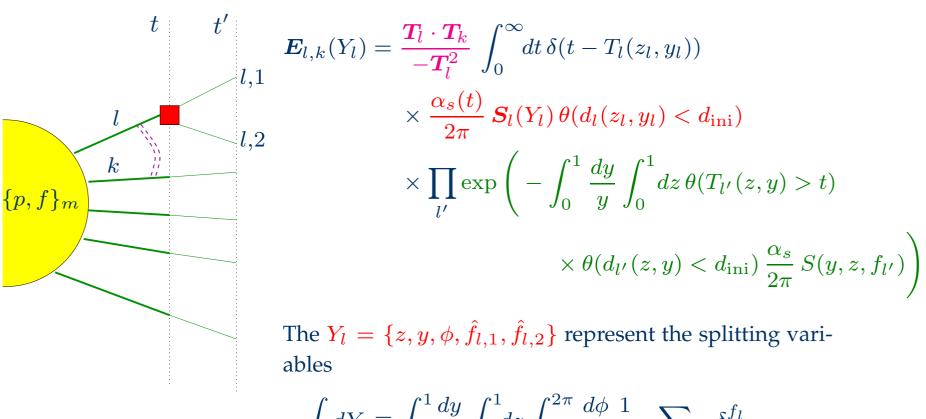
At NLO level one term in the CKKW cross section should be

$$\sigma_m^{NLO+S}[F] = \sigma_m^{B+S}[F] + \sigma_m^{R+S}[F] + \sigma_m^{V+S}[F]$$

But the Born term in the NLO part must be matched to the NLO calculation

$$\sigma_m^{B+S}[F] = \sum_{\{f\}_m} \frac{1}{m!} \int d\Gamma(\{p\}_m; Q) \,\theta(d_m > d_{\text{ini}}) \, W_m(\{p, f\}_m)$$
$$\times \sum_{l=1}^m \sum_{k \neq l} \left\langle \mathcal{M}(\{p, f\}_m) \middle| \int dY_l \, \boldsymbol{E}_{l,k}(Y_l) \middle| \mathcal{M}(\{p, f\}_m) \right\rangle$$
$$\times \left(S(\{\hat{p}, \hat{f}\}_{m+1}; \boldsymbol{d} < d_{\text{ini}}) \middle| F \right)$$

EMISSION OPERATOR



$$\int dY_l \equiv \int_0^1 \frac{dy}{y} \int_0^1 dz \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{1}{2} \sum_{\hat{f}_{l,1}, \hat{f}_{l,2}} \delta^{f_l}_{\hat{f}_{l,1} + \hat{f}_{l,2}}$$

It is not a simple object but its integral is very simple

$$\sum_{k \neq l} rac{T_l \cdot T_k}{-T_l^2} = 1 \qquad \Longrightarrow \qquad \sum_l \sum_{k \neq l} \int dY_l \, oldsymbol{E}_{l,k}(Y_l) = 1$$

Merging Parton Showers with NLO QCD - p. 10

SPLITTING KINEMATICS

The daugther partons those are emitted from the line *l* are labeled by *l*, 1 and *l*, 2. Their flavors must correspond to a QCD vertex that $f_l \rightarrow \hat{f}_{l,1} + \hat{f}_{l,2}$.

The momenta are defined according to the Sudakov parametrization

 $\hat{p}_{l,1} = z p_l + y(1-z) p_k + k_\perp$, $\hat{p}_{l,2} = (1-z) p_l + y z p_k - k_\perp$,

and the spectator (recoiled) momentum is $\hat{p}_k = (1 - y)p_k$.

$$p_l + p_k = \hat{p}_{l,1} + \hat{p}_{l,2} + \hat{p}_k$$
, $\hat{p}_{l,1}^2 = \hat{p}_{l,2}^2 = 0$.

The transverse momentum is perpendicular both to the emitter and spectator

$$k_{\perp} \cdot p_l = k_{\perp} \cdot p_k = 0$$
, $k_{\perp}^2 = -2p_l \cdot p_k y z (1-z)$.

The phase space can be written in factorized form

$$d\Gamma^{(m+1)}(\{\hat{p}\}_{m+1};Q)\frac{1}{2\hat{p}_{l,1}\cdot\hat{p}_{l,2}} = d\Gamma^{(m)}(\{p\}_m;Q)\frac{dy}{y}\,dz\,\frac{d\phi}{2\pi}\,\frac{1-y}{16\pi^2}$$

 \implies There is no approximation in the phase space.

Splitting Kernels

The *S* splitting kernels are based on the Catani-Seymour dipole factorization formulas. For example for the $q \rightarrow q + g$ splitting

$$\langle s | \mathbf{S}_{qg}(z,y) | s' \rangle = C_{\rm F} (1-y) \left[\frac{2}{1-z(1-y)} - (1+z) \right] \delta_{ss'} ,$$

and similarly for the $g \rightarrow g + g$ splitting

$$\langle s | \mathbf{S}_{gg}(p_l, z, y, k_\perp) | s' \rangle = 2C_{\rm A} (1-y) \epsilon^*_{\mu}(p, s) \left[-g^{\mu\nu} \left(\frac{1}{1-z(1-y)} + \frac{1}{1-(1-z)(1-y)} - 2 \right) + 2z(1-z) \frac{k^{\mu}_{\perp} k^{\nu}_{\perp}}{-k^2_{\perp}} \right] \epsilon_{\nu}(p, s') .$$

The evolution variable is chosen to be proportional to the transverse momentum

$$T_l(z,y) = s_l y z (1-z) ,$$

where s_l is a hard scale but it is independent off the spectator label k.

NLO CORRECTION

At NLO level one term in the CKKW cross section should be $\sigma_m^{NLO+S}[F] = \sigma_m^{B+S}[F] + \sigma_m^{R+S}[F] + \sigma_m^{V+S}[F]$

The contributions of the m + 1 parton matrix element should be

$$\sigma_{m}^{R+S}[F] = \sum_{\{f\}_{m+1}} \frac{1}{(m+1)!} \int_{m+1} d\Gamma^{(m+1)}(\{p\}_{m+1}; Q)$$

$$\times \left\{ \left| \mathcal{M}(\{p\}_{m+1}) \right|^{2} \theta(d_{m} > d_{\mathrm{ini}}) \theta(d_{m+1} < d_{\mathrm{ini}}) - \sum_{\substack{i,j \\ \mathrm{pairs}}} \sum_{k \neq i,j} \mathcal{D}_{ij,k}(\{p\}_{m+1}) \theta(d_{m} > d_{\mathrm{ini}}) \theta(d_{ij} < d_{\mathrm{ini}}) \right\}$$

$$\times \left(S(\{p, f\}_{m+1}) | F \right)$$

NLO CORRECTION

At NLO level one term in the CKKW cross section should be $\sigma_m^{NLO+S}[F] = \sigma_m^{B+S}[F] + \sigma_m^{R+S}[F] + \sigma_m^{V+S}[F]$

The contributions of the m parton one-loop matrix element is

$$\sigma_m^{V+S}[F] = \sum_{\{f\}_m} \frac{1}{m!} \int_m d\Gamma^{(m)}(\{p\}_m; Q)$$

$$\times \left\{ Re \left\langle \mathcal{M}(\{p, f\}_m) \middle| \left[\mathbf{I}(\epsilon) \middle| \mathcal{M}(\{p, f\}_m) \right\rangle + 2 \middle| \mathcal{M}^{(1)}(\{p, f\}_m; \epsilon) \right\rangle \right]_{\epsilon=0}$$

$$- \frac{\alpha_s}{2\pi} W_m^{(1)}(\{p, f\}_m) \left\langle \mathcal{M}(\{p, f\}_m) \middle| \mathcal{M}(\{p, f\}_m) \right\rangle$$

$$- \sum_l \sum_{k \neq l} C_{l,k}(\{p\}_m, d_{\mathrm{ini}}) \right\}$$

$$\times (S(\{p, f\}_m) \middle| F)$$

NLO EXPANSION

The secondary shower has the property that

$$(S(\{p,f\}_n)|F) = F(\{p\}_n) + \mathcal{O}(\alpha_s) + \mathcal{O}(1 \,\mathrm{GeV}/\sqrt{s})$$

If the measurement function F sensitive for the *N*-jet region then the main contribution comes from the partial cross section $\sigma_{m=N}^{NLO+S}$. The expansion of the Born term is

$$\sigma_{N}^{B+S}[F] = \sum_{\{f\}_{N}} \frac{1}{N!} \int d\Gamma(\{p\}_{N}; Q) \left\langle \mathcal{M}(\{p, f\}_{N}) \middle| \mathcal{M}(\{p, f\}_{N}) \right\rangle \\ \times F(\{p\}_{N}) \,\theta(d_{N} > d_{\mathrm{ini}}) \left(1 + \frac{\alpha_{s}}{2\pi} W_{N}^{(1)}\right) \\ + \sum_{\{f\}_{m+1}} \frac{1}{(N+1)!} \int_{N+1} d\Gamma^{(N+1)}(\{p\}_{N+1}; Q) \\ \times \sum_{\substack{i,j \\ \mathrm{pairs}}} \sum_{\substack{k \neq i,j}} \mathcal{D}_{ij,k}(\{p\}_{N+1}) \,\theta(d_{ij} < d_{\mathrm{ini}} < d_{N}^{ij,k}) \\ \times \left\{ F(\{p\}_{N+1}) - F(\{\tilde{p}\}_{N}^{ij,k}) \right\} \\ + \mathcal{O}(\alpha_{s}^{2}) + \mathcal{O}(1 \,\mathrm{GeV}/\sqrt{s})$$

NLO EXPANSION

Finally, the perturbative expansion of the N-jet cross section is

$$\begin{split} \sigma^{S}[F] &= \sigma_{m}^{NLO}[F] + \\ &+ \sum_{\{f\}_{N}} \frac{1}{N!} \int d\Gamma(\{p\}_{N}; Q) \, \theta(d_{N} > d_{\mathrm{ini}}) F(\{p\}_{N}) \\ &\times \Big[\langle \mathcal{M}(\{p, f\}_{N}) \big| \mathcal{M}(\{p, f\}_{N}) \rangle \big(W_{N}^{(1)} - W_{N}^{(1)} \big) \\ &- \sum_{l} \sum_{k \neq l} C_{l,k}(\{p\}_{N}, d_{\mathrm{ini}}) \Big] \\ &+ \sum_{\{f\}_{N+1}} \frac{1}{(N+1)!} \int_{m+1} d\Gamma^{(N+1)}(\{p\}_{N+1}; Q) \\ &\times \sum_{\substack{i,j \\ \text{pairs}}} \sum_{k \neq i,j} \mathcal{D}_{ij,k}(\{p\}_{N+1}) \, \theta(d_{N}^{ij,k} > d_{\mathrm{ini}}) \\ &\times \Big\{ F(\{p\}_{N+1}) - F(\{p\}_{N+1}) + F(\{p\}_{N}^{ij,k}) \theta(d_{ij} \ge d_{\mathrm{ini}}) \\ &+ \mathcal{O}(\alpha_{s}^{2}) + \mathcal{O}(1 \, \mathrm{GeV}/\sqrt{s}) \end{split}$$

CONCLUSIONS AND **OUTLOOKS**

- With some modifications in the first step of the shower we are able to merge the parton shower with the NLO cross section avoiding the double counting.
 - The method is Lorentz covariant.
 - Let is based on the Catani-Seymour dipole subtraction method.
 - The method is not specific to a particular Monte Carlo implementation.
 - The algorithm is **fully accurate** in the **soft region** (in every singular regions). There is no left over singularities that needs special treatment.
- This method works for the processes with incoming hadrons,
- and with massive particles
- With this method we can also add "NLO matrix element" corrections to the parton shower (CKKW@NLO).
- The coding is a big challenge. We need a general NLO program that can work together with the automated matrix element generators.

CONCLUSIONS AND OUTLOOKS

- Based on the C-S dipole factorization one can define a new transverse ordered shower.
 - The shower is Lorentz invariant/covariant.
 - The phase space is the exact *m*-body phase space with the exact phase space weight.
 - The angular ordering is provided by the kinematics. \implies There is no awkward cut parameters in the algorithm.
 - Actually there is only one external parameter, the infrared cutoff parameter.
- The k_{\perp} ordered shower helps to have better understanding on the "Matrix element + Shower" matching
 - Two ways: Slicing (CKKW) and Subtraction (\Rightarrow Peter Skands talk)
 - Let is not obvious but they are completely equivalent.
 - The slicing method is *artificially* complicated.
 - The subtraction method is more suitable for NLO+Shower matching.
- The shower with exact phase space is the best way to include higher order effects. ⇒ complete NNLO subtraction method with exact phase space factorization at least at leading color level