Higher Loops: Summary and Prospects Impression and observations

George Sterman, Stony Brook

My perspective in the light of work with
Nikolaos Kidonakis Carola F. Berger, Tibor Kucs
Maria-Elena Tejeda-Yeomans \& S. Mert Aybat

- Why so many loops?
- How we get away with perturbation theory in QCD
- Themes of this Loopfest
- What resummation says about singularities
- Concluding comments

No figures: please imagine loops as necessary

- Why so many loops?
- Coupling to the decoupled

All New Physics is embedded in Standard Model observables but only through values of observable parameters: M_{W}, α_{s}, etc. Effect of massive ($M_{\text {new }} \gg E_{\text {ext }}$) states is local

- Discovering the quantum mechanical stories

But final states are generally indistinguishable from standard model processes event by event.
At high enough energies ($E_{\text {ext }} \geq M_{\text {new }}$)
these effects become nonlocal; producing deviations
from Standard Model predictions
But only by precision in rates \& distributions of Standard Model and New Physics signals can the nonlocality be quantified and New Physics discovered.

- How we get away with perturbative QCD
- The problem for perturbation theory

1. Confinement

$$
\int \mathrm{e}^{-i q \cdot x}\langle 0| T\left[\phi_{a}(x) \ldots\right]|0\rangle
$$

has no $q^{2}=m^{2}$ pole for ϕ_{a} that
transforms nontrivially under color (confinement)
2. The pole at $p^{2}=m_{\pi}^{2}$

$$
\int \mathrm{e}^{-i q \cdot x}\langle 0| T[\pi(x) \ldots]|0\rangle
$$

is not accessible to perturbation theory ($\chi \mathrm{SB}$ etc., etc.)

- And yet we use infrared safety \& asymptotic freedom:

$$
\begin{aligned}
Q^{2} \hat{\sigma}_{\mathrm{SD}}\left(Q^{2}, \mu^{2}, \alpha_{s}(\mu)\right) & =\sum_{n} c_{n}\left(Q^{2} / \mu^{2}\right) \alpha_{s}{ }^{n}(\mu)+\mathcal{O}\left(1 / Q^{p}\right) \\
& =\sum_{n} c_{n}(1) \alpha_{s}{ }^{n}(Q)+\mathcal{O}\left(1 / Q^{p}\right)
\end{aligned}
$$

- What are we really calculating? PT for color singlet operators
$-\int \mathrm{e}^{-i q \cdot x}\langle 0| T[J(x) J(0) \ldots]|0\rangle$ for color singlet currents
$\mathrm{e}^{+} \mathrm{e}^{-}$total, sum rules etc. "no scale" (Dixon)
- Another class of color singlet matrix elements:

$$
\lim _{R \rightarrow \infty} \int d x_{0} \int d \hat{n} f(\hat{n}) \mathrm{e}^{-i q \cdot y}\langle 0| J(0) T\left[\hat{n}_{i} \Theta_{0 i}\left(x_{0}, R \hat{n}\right) J(y)\right]|0\rangle
$$

With $\Theta_{0 i}$ the energy momentum tensor

- These are what we really calculate
"Weight" $f(\hat{n})$ introduces no new dimensional scale

Short-distance dominated if all $d^{k} f / d \hat{n}^{k}$ bounded

Individual final states have IR divergences, but these cancel in sum over collinear splitting/merging and soft parton emission because they respect energy flow

We regularize these divergences dimensionally (typically) and "pretend" to calculate the long-distance enhancements only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions tough, and is part [not all] of why higher-order calculations are hard!

The goals of experiment are remarkably similar - to control late stage interactions in calorimeters. J. Repond

- Jet, event shape, energy flow observables
(Tkachov 95, Korchemsky, Oderda, GS 96)
- Light quarks ($m \ll \Lambda_{\mathrm{QCD}}$): hadronization respects energy flow
- Parton-hadron duality
- Were it not for light quarks all of QCD would be NRQCD
- Analogies to calculations:
* Energy flow expectations \Leftrightarrow calorimetric measurements
* Event generators \Leftrightarrow multi-particle cross sections
- But sometimes want to introduce new scales say $(1-T) Q$, mass of narrow jets in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation
- And anyway the formation of initial-state hadrons is never short-distance . . .
- Generalization: factorization

$$
Q^{2} \sigma_{\text {phys }}(Q, m)=\omega_{\mathrm{SD}}\left(Q / \mu, \alpha_{s}(\mu)\right) \otimes f_{\mathrm{LD}}(\mu, m)+\mathcal{O}\left(1 / Q^{p}\right)
$$

$-\mu=$ factorization scale; $m=\mathbf{I R}$ scale (m may be perturbative)

- New physics in $\omega_{\mathrm{SD}} ; f_{\mathrm{LD}}$ "universal"
- Deep-inelastic $(p=2), \mathrm{p} \overline{\mathrm{p}} \rightarrow Q \bar{Q} \ldots$
- Exclusive decays: $B \rightarrow \pi \pi$
- Exclusive limits: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{JJ}$ as $m_{J} \rightarrow 0$
- Whenever there is factorization, there is evolution

$$
\begin{aligned}
0 & =\mu \frac{d}{d \mu} \ln \sigma_{\mathrm{phys}}(Q, m) \\
\mu \frac{d \ln f}{d \mu} & =-P\left(\alpha_{s}(\mu)\right)=-\mu \frac{d \ln \omega}{d \mu}
\end{aligned}
$$

- Wherever there is evolution there is resummation

$$
\ln \sigma_{\mathrm{phys}}(Q, m)=\exp \left\{\int_{q}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}} P\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right\}
$$

- Infrared safety \& factorization proofs:
- (1) ω_{SD} incoherent with long-distance dynamics
- (2) Mutual incoherence when $v_{\text {rel }}=c$: Jet-jet factorization Ward identities.
- (3) Wide-angle soft radiation sees only total color flow: jet-soft factorization Ward identities.
- (4) Dimensionless coupling and renormalizability \Leftrightarrow no worse that logarithmic divergence in the IR: fractional power suppression \Rightarrow finiteness
- Summary for $\mathrm{e}^{+} \mathrm{e}^{-}$: factorization into universal jets + soft

$$
\sigma=\prod_{\text {jets } \mathrm{j}} J_{j}\left(p_{j}\right) S_{\{j\}}
$$

we'll come back to this

- Themes of this Loopfest
A. Bringing new physics to the foreground in precision measurements matched with precision theory
- Instrinsic theoretical uncertainties in the Standard Model can be smaller than those of extensions like SUSY. Why wait for experiment?
- Venturing to higher loops in extensions of the Standard Model requires consistent treatment of renormalization in addition to calculational power.
- Two loop Yukawa corrections in MSSM:
M_{W} and weak mixing. G. Weiglein, S. Heinemeyer
- The high price of giving up custodial $S U(2)$ in extensions of the Standard Model. T. Krupovnickas
- Fermionic and bosonic corrections to weak mixing in the Standard Model. M. Awramik
- $\mathcal{O}\left(\alpha^{2}\right)$ corrections to $d \Gamma / d x$ for μ decay. K. Melnikov
- Exploration of EW corrections and uncertainties in M_{W}. U. Baur
- In QCD pecial requirements of $t \overline{\mathrm{t}}$ near threshold resummations in α_{s} / v and $\alpha_{s} \ln v$: advances to NNLL/ ν NRQCD A. Hoang
- NNLO and NNLL in $K^{+} \rightarrow \pi^{+} \nu \bar{\nu} . \mathcal{O}\left(\alpha_{s}{ }^{2}\right)$ in coefficients and $\mathcal{O}\left(\alpha_{s}{ }^{3}\right)$ in anomalous dimensions. U. Haisch
- Qualitative advances of a few years ago are today's commonplace tools (requiring uncommon skill to use) (approximate) Quote of the workshop: "Only a few diagrams, about 300."
- The exploitation of advances in computing power
B. The background to New Physics: QCD corrections analytic and numerical tracks
- Taming NNLO cross sections: how to use infrared safety?
* Subtractions and antennae:

Implementing soft-jet factorization

Organized into the number of "unresolved" partons $\sigma^{\mathrm{NNLO}}=\int_{n+2}\left(d \sigma_{n+2}^{(0)}-d \alpha_{n+2}^{(0)}-d \gamma_{n+2}^{(0)}+d \beta_{n+2}^{(0)}\right)+\ldots$
$\alpha^{(0)}, \gamma^{(0)}$ single and double-particle subtractions
$\gamma^{(0)}$ eliminates double counting W. Kilgore, T. Gehrmann

Explicit NNLO subtractions for 3 -jet cross sections in $\mathrm{e}^{+} \mathrm{e}^{-}$ organized around color connections (antennae)
T. Gehrmann, A. Gehrmann-De Ridder

* Sector decomposition
F. Petriello

Utilize logarithmic bounds on singularities

$$
P S=\prod_{i} \int d \lambda_{i} \lambda_{i}^{a_{i} \varepsilon}(1-\lambda)^{b_{i} \varepsilon}
$$

Chosen such that $|M|^{2} \sim 1 / \lambda_{i}$, to develop Laurent series:

$$
\frac{1}{\lambda^{1+\varepsilon}}=\frac{1}{-\varepsilon} \delta(\lambda)+\left[\frac{1}{\lambda}\right]_{+}+\ldots
$$

Transparent implementation of experimental cuts consistent with infrared safety Petriello, Melnikov

Another exploitation of computing capability

* Similar themes in GRACE evaluation of phase space integrals toward NLO QCD generator. Y. Kurihara
* Semi-numerical calculations for virtual corrections to Higgs plus jets in heavy-top effective theory Laurent expansion (again). G. Zanderighi

C. Advances at tree and NLO

What it looks like to one outsider: Degree of difficulty.

$$
\text { Difficulty }=C \times E \exp [L /(1+\mathcal{N})]
$$

with $E=$ number of external lines, $L=$ number of loops
$\mathcal{N}=$ number of supersymmetries

- Progress in QED scattering generators. S. Yost, A. Lorca
- Multipurpose automated computation
D. Rainwater, K. Yoshimasa, A. Lorca
- Matching parton showers to NLO P. Skands, Z. Nagy
- Recursive trees and the new analytic continuation: spinors, tree and loops. L. Dixon

$$
\left(k^{\mu} \sigma_{\mu}\right)_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}
$$

* Continuation of a story from the previous Loopfest
* The newest features come from "on-shell analytic continuation"

$$
\lambda_{1} \rightarrow \hat{\lambda}_{1}=\lambda_{1}-z \lambda_{n}
$$

* Recursion in tree diagrams
* Progress toward recursion at NLO
* Ultimate role of twistor space not settled
- What resummation says about virtual corrections
- Context: Breakthroughs in multiscale NNLO matrix elements, anomalous dimensions and amplitudes
(Tausk, Smirnov, Anastasiou, Glover, Oleari Tejeda-Yeomans, Bern, De Freitas, Dixon, Gehrmann, Remiddi . . .)
- Progress in the resummation of logarithmic corrections to all orders in perturbation theory
- Challenge of cross sections: especially with realistic cuts
- Synergy between the two in this context?
- Resummation is based on jet-soft-jet factorization with simplified color structure.
- The structure of elastic amplitudes in dimensional regularization
- Partonic processes

$$
\begin{aligned}
\mathrm{f} & : f_{A}\left(\ell_{A}, r_{A}\right)+f_{B}\left(\ell_{B}, r_{B}\right) \rightarrow f_{1}\left(p_{1}, r_{1}\right)+f_{2}\left(p_{2}, r_{2}\right)+\ldots \\
\mathrm{f}^{\prime} & : V(Q) \rightarrow f_{1}\left(p_{1}, r_{1}\right)+f_{2}\left(p_{2}, r_{2}\right)+\ldots
\end{aligned}
$$

- Color tensor

$$
\begin{aligned}
\mathcal{M}_{\left\{r_{i}\right\}}^{[\mathrm{f}]}\left(\left\{\wp_{j}\right\}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) & =\mathcal{M}_{L}^{[\mathrm{f}]}\left(\left\{\wp_{j}\right\}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\left(c_{L}\right)_{\left\{r_{i}\right\}} \\
& \equiv\left|\mathcal{M}^{[\mathrm{f}]}\right\rangle
\end{aligned}
$$

- Recursion relations in infrared structure (Catani 98, Tejeda-Yeomans GS (03), Bern Dixon Kosower (05))
- Color tensor factorization

$$
\begin{aligned}
& \mathcal{M}_{L}^{[\mathrm{f}]}\left(\wp_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=J^{[\mathrm{f}]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& \times S_{L I}^{[\mathrm{f}]}\left(\wp_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) h_{I}^{[\mathrm{f}]}\left(\wp_{i}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)
\end{aligned}
$$

- The factors . . .
- An infrared safe coefficient h_{I} for each color tensor I
- Coherent virtual soft gluon exchange function $S_{L I}$: interpolates short to long distance color tensors
- Product of "jets" collinear to external lines: color diagonal
- The jet functions:

$$
J^{[\mathrm{f}]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \equiv \prod_{i} J_{(\text {virt })}^{\left[f_{i}\right]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

- Definitions form $1_{\text {singlet }} \leftrightarrow 2: J^{[i]}=J^{[\bar{i}]}=\sqrt{M^{[i \bar{i} \rightarrow 1]}}$

$$
\begin{aligned}
\mathcal{M}^{[i \bar{i} \rightarrow 1]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) & =\exp \left\{\frac { 1 } { 2 } \int _ { 0 } ^ { - Q ^ { 2 } } \frac { d \xi ^ { 2 } } { \xi ^ { 2 } } \left[\mathcal{K}^{[i]}\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right.\right. \\
& +\mathcal{G}^{[i]}\left(-1, \bar{\alpha}_{s}\left(\frac{\mu^{2}}{\xi^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon,\right) \epsilon\right) \\
& \left.+\frac{1}{2} \int_{\xi^{2}}^{\mu^{2}} \frac{d \tilde{\mu}^{2}}{\tilde{\mu}^{2}} \gamma_{K}^{[i]}\left(\bar{\alpha}_{s}\left(\frac{\mu^{2}}{\tilde{\mu}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right)\right]
\end{aligned}
$$

- Derived from factorization (Mueller 79, Collins-Soper, Sen 80)
- Compare to fixed-order by re-expansion of α_{s} in D dimensions (Magnea-GS 91)
- Anomalous dimensions $\mathcal{K}, \mathcal{G}, \gamma_{K} \leftrightarrow A$ available to 2, 2, 3 loops (Moch,Vermaseren,Vogt,Gehrmann, 2005)
- The soft functions
$\mathbf{S}^{[\mathrm{f}]}\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\mathrm{P} \exp \left[-\frac{1}{2} \int_{0}^{-Q^{2}} \frac{d \tilde{\mu}^{2}}{\tilde{\mu}^{2}} \boldsymbol{\Gamma}^{[\mathrm{f}]}\left(\overline{\alpha_{s}}\left(\frac{\mu^{2}}{\tilde{\mu}^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right)\right]$
- From evolution equation: $\frac{d}{d \ln Q} S_{L I}=-\Gamma_{L J}^{[\mathrm{f}]} S_{J I}$ (Botts-GS 85, Kidonakis, Oderda-GS 98)
- LL in soft \rightarrow NNLL overall:
- "The fifth form factor" (Dokshitzer and Marchesini 08/05) Relation of $t \rightarrow u$ and $N \rightarrow \infty$?
- What we know; what we need to know
$-\Gamma_{S}$ known at 1 loop, "available" at 2
- For γ_{K} to $\alpha_{s}{ }^{n+1}, \mathcal{K}, \mathcal{G}, \Gamma_{S}$ to $\alpha_{s}{ }^{n}: 1 / \epsilon^{P}, P>1 . m \rightarrow m^{\prime}$
- For $1 / \epsilon$ need only Sudakov form factor and Γ_{S} to $\alpha_{s}{ }^{n+1}$
- Color evolution is entirely in the soft function. Could indicate simplifications in subtraction color structure.
- Reproduces ϵ structure of QCD $2 \rightarrow 2$ amplitudes
- A recent surprise, motivated by study of SYM and heroic calculation of 3 loop planar diagrams ...
- Recursive infrared structure of $2 \rightarrow 2$ at 3 loops
(Tejeda Yeomans GS (03), Bern, Dixon, Smirnov (05) [Maximal SYM])

$$
\begin{aligned}
\left|\mathcal{M}^{[\mathrm{f}(3)]}\right\rangle= & \boldsymbol{F}^{[\mathrm{f}(1)]}(\epsilon)\left|\mathcal{M}^{[\mathrm{f}(2)]}\right\rangle+\boldsymbol{F}^{[\mathrm{f}(2)]}(\epsilon)\left|\mathcal{M}^{[\mathrm{f}(1)]}\right\rangle \\
& +\boldsymbol{F}^{[\mathrm{f}(3)]}(\epsilon)\left|\mathcal{M}^{[\mathrm{f}(0)]}\right\rangle+\left|\mathcal{M}_{U V}^{[\mathrm{f}(3)]}\right\rangle
\end{aligned}
$$

- where for example . . .
- The coefficient of $\left|\mathcal{M}^{[\mathrm{f}(0)]}\right\rangle$

$$
\begin{aligned}
& \boldsymbol{F}^{[\mathrm{f}(3)]}(\epsilon)=-\frac{1}{3}\left[\boldsymbol{F}^{[\mathrm{f}(1)]}(\epsilon)\right]^{3}-\frac{1}{3} \boldsymbol{F}^{[\mathrm{f}(1)]}(\epsilon) \boldsymbol{F}^{[\mathrm{f}(2)]}(\epsilon)-\frac{2}{3} \boldsymbol{F}^{[\mathrm{f}(2)]}(\epsilon) \boldsymbol{F}^{[\mathrm{f}(1)]}(\epsilon) \\
&-\left(\frac{\beta_{0}}{4 \epsilon}\right)^{2} \boldsymbol{F}^{[\mathrm{f}(1)]}(3 \epsilon)+\left(\frac{\beta_{0}}{4 \epsilon}\right)\left\{-\frac{1}{2}\left[\boldsymbol{F}^{[\mathrm{f}(1)]}(\epsilon)\right]^{2}-\boldsymbol{F}^{[\mathrm{f}(2)]}(\epsilon)\right. \\
&+\frac{1}{2}\left(\mathrm{~K}+\frac{\beta_{0}}{2 \epsilon}\right)\left[2 \boldsymbol{F}^{[\mathrm{f}(1)]}(3 \epsilon)-\boldsymbol{F}^{[\mathrm{f}(1)]}(2 \epsilon)\right] \\
&\left.+\boldsymbol{L}^{[\mathrm{f}(2)]}(3 \epsilon)-\frac{1}{2} \boldsymbol{L}^{[\mathrm{f}(2)]}(2 \epsilon)\right\}+\frac{1}{2} \boldsymbol{L}^{[\mathrm{f}(3)]}(3 \epsilon)
\end{aligned}
$$

- All F's, L's on the right are combinations of γ_{K} to $\alpha_{s}{ }^{3}, \mathcal{K}, \mathcal{G}, \Gamma_{S}$ to $\alpha_{s}{ }^{2}$, and $\frac{1}{\epsilon}$
- Concluding Comments
- Perturbative quantum field theory is vibrant, opportunistic and inspires total dedication. There seems no other way to get things right.
- The capabilities of experiment and theory are well matched and mutually inspiring.
- The field was advanced qualitatively by 2-loop computations and three-loop anomalous dimensions, and applications are still being found.
- Amazing (to me at least) advance in analytic results within the previous year,
- As well as in the power of numerical approaches.
- There is further potential for applications of resummation whose power is greatly enhanced by exact 2-loop results.
- Is it possible to combine the nominal flexibility of sector decomposition with physically-motivated subtraction formalism that makes use of the universality in final-state evolution?
- The somewhat coarser resolutions and backgrounds at the LHC may paradoxically provide the time to fully realize the potential of techniques that are now being developed and reach fruition at a future (but not too far future) ILC

