Antenna Subtraction at NNLO

Aude Gehrmann-De Ridder

ETH Zürich
in collaboration with T. Gehrmann, E.W.N. Glover

Loopfest IV - Snowmass 2005

Outline

- Jet observables
- Jets in perturbation theory
- Antenna subtraction at NLO
- Antenna subtraction at NNLO
- Double real radiation
- Different antenna types

Jet Observables

Experimentally:

- major testing ground of QCD in $e^{+} e^{-}$annihilation
- measurement of the 3-Jet production rate and related event shape observables allows a precise determination of α_{s}
- current error on α_{s} from jet observables dominated by theoretical uncertainty:

$$
\begin{aligned}
\alpha_{s}\left(M_{Z}\right)= & 0.1202 \pm 0.0003(\text { stat }) \pm 0.0009 \text { (sys) } \\
& \pm 0.0009(\text { had }) \pm 0.0047 \text { (scale) }
\end{aligned}
$$

Theoretically:

- Partons are combined into jets using the same jet algorithm (recombination procedure) as in experiment
LO

each
parton
forms 1 jet
on its own

2 partons in
1 jet, 1 parton
experimentally
unresolved

3 partons in
1 jet, 2 partons
experimentally
unresolved

Current state-of-the-art: NLO Need for NNLO:

- reduce error on α_{s}
- better matching of parton level and hadron level jet algorithm

Jets in Perturbation Theory

Ingredients to NNLO m-jet:

- Two-loop matrix elements

explicit infrared poles from loop integrals
- One-loop matrix elements

explicit infrared poles from loop integral and implicit infrared poles due to single unresolved radiation
- Tree level matrix elements

implicit infrared poles due to double unresolved radiation

Infrared Poles cancel in the sum

Real Corrections at NNLO

Infrared subtraction terms

$m+2$ partons $\rightarrow m$ jets:

- Double unresolved configurations:
- triple collinear
- double single collinear
- soft/collinear
- double soft
$m+2 \rightarrow m+1$ pseudopartons $\rightarrow m$ jets:

- Single unresolved configurations:
- collinear
- soft
J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini

Issue: find subtraction functions which

- approximate full $m+2$ matrix element in all singular limits
- are sufficiently simple to be integrated analytically

NLO Antenna Subtraction

Structure of NLO m-jet cross section (subtraction formalism):
Z. Kunszt, D. Soper

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{N L O}^{R}-\mathrm{d} \sigma_{N L O}^{S}\right)+\left[\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{N L O}^{S}+\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{N L O}^{V}\right]
$$

- $\mathrm{d} \sigma_{N L O}^{S}$: local counter term for $\mathrm{d} \sigma_{N L O}^{R}$
- $\mathrm{d} \sigma_{N L O}^{R}-\mathrm{d} \sigma_{N L O}^{S}$: free of divergences, can be integrated numerically

Building block of $\mathrm{d} \sigma_{N L O}^{S}$: \quad NLO-Antenna function $X_{i j k}^{0}$
Normalised and colour-ordered 3-parton matrix element with 2 radiators and 1 radiated parton in between
(J. Campbell, M. Cullen, E.W.N. Glover; D. Kosower)

$$
\begin{aligned}
& \mathrm{d} \sigma_{N L O}^{S}=\mathcal{N} \sum_{m+1} \mathrm{~d} \Phi_{m+1}\left(p_{1}, \ldots, p_{m+1} ; q\right) \frac{1}{S_{m+1}} \\
& \quad \times \quad \sum_{j} X_{i j k}^{0}\left|\mathcal{M}_{m}\left(p_{1}, \ldots, \tilde{p}_{I}, \tilde{p}_{K}, \ldots, p_{m+1}\right)\right|^{2} J_{m}^{(m)}\left(p_{1}, \ldots, \tilde{p}_{I}, \tilde{p}_{K}, \ldots, p_{m+1}\right)
\end{aligned}
$$

Dipole formalism (S. Catani, M. Seymour): two dipoles = one antenna

NLO Antenna Subtraction

Phase space factorisation
$\mathrm{d} \Phi_{m+1}\left(p_{1}, \ldots, p_{m+1} ; q\right)=\mathrm{d} \Phi_{m}\left(p_{1}, \ldots, \tilde{p}_{I}, \tilde{p}_{K}, \ldots, p_{m+1} ; q\right) \cdot \mathrm{d} \Phi_{X_{i j k}}\left(p_{i}, p_{j}, p_{k} ; \tilde{p}_{I}+\tilde{p}_{K}\right)$
Integrated subtraction term (analytically)

$$
\left|\mathcal{M}_{m}\right|^{2} J_{m}^{(m)} \mathrm{d} \Phi_{m} \int \mathrm{~d} \Phi_{X_{i j k}} X_{i j k}^{0} \sim\left|\mathcal{M}_{m}\right|^{2} J_{m}^{(m)} \mathrm{d} \Phi_{m} \int \mathrm{~d} \Phi_{3}\left|M_{i j k}^{0}\right|^{2}
$$

can be combined with $\mathrm{d} \sigma_{N L O}^{V}$

NNLO Infrared Subtraction

Structure of NNLO m-jet cross section:

$$
\begin{aligned}
\mathrm{d} \sigma_{N N L O}= & \int_{\mathrm{d} \Phi_{m+2}}\left(\mathrm{~d} \sigma_{N N L O}^{R}-\mathrm{d} \sigma_{N N L O}^{S}\right)+\int_{\mathrm{d} \Phi_{m+2}} \mathrm{~d} \sigma_{N N L O}^{S} \\
& +\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{N N L O}^{V, 1}-\mathrm{d} \sigma_{N N L O}^{V S, 1}\right)+\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{N N L O}^{V S, 1} \\
& +\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{N N L O}^{V, 2}
\end{aligned}
$$

- $\mathrm{d} \sigma_{N N L O}^{S}$: real radiation subtraction term for $\mathrm{d} \sigma_{N N L O}^{R}$
- $\mathrm{d} \sigma_{N N L O}^{V S, 1}$: one-loop virtual subtraction term for $\mathrm{d} \sigma_{N N L O}^{V, 1}$
- $\mathrm{d} \sigma_{N N L O}^{V, 2}$: two-loop virtual corrections

Double Real Subtraction

Tree-level real radiation contribution to m jets at NNLO

$$
\begin{aligned}
& \mathrm{d} \sigma_{N N L O}^{R}=\mathcal{N} \sum_{m+2} \mathrm{~d} \Phi_{m+2}\left(p_{1}, \ldots, p_{m+2} ; q\right) \frac{1}{S_{m+2}} \\
& \quad \times \quad\left|\mathcal{M}_{m+2}\left(p_{1}, \ldots, p_{m+2}\right)\right|^{2} J_{m}^{(m+2)}\left(p_{1}, \ldots, p_{m+2}\right)
\end{aligned}
$$

- $\mathrm{d} \Phi_{m+2}$: full $m+2$-parton phase space
- $J_{m}^{(m+2)}$: ensures $m+2$ partons $\rightarrow m$ jets \longrightarrow two partons must be experimentally unresolved
Up to two partons can be theoretically unresolved (soft and/or collinear)
Building blocks of subtraction terms:
- products of two three-parton antenna functions
- single four-parton antenna function

Double Real Subtraction

Distinct Configurations for $m+2$ partons $\rightarrow m$ jets: Colour connections

- one unresolved parton (a)
- three parton antenna function $X_{i j k}^{0}$ can be used (as at NLO)
- this will not yield a finite contribution in all single unresolved limits
- two colour-connected unresolved partons (b)

- four-parton antenna function $X_{i j k l}^{0}$
- two almost colour-unconnected unresolved partons (common radiator) (c)

- strongly ordered product of non-independent three-parton antenna functions
- two colour-unconnected unresolved partons (d)

- product of independent three-parton antenna functions

Double Real Subtraction

Two colour-connected unresolved partons

$$
\begin{aligned}
& \mathrm{d} \sigma_{N N L O}^{S, b}=\mathcal{N} \sum_{m+2} \mathrm{~d} \Phi_{m+2}\left(p_{1}, \ldots, p_{m+2} ; q\right) \frac{1}{S_{m+2}} \\
& \quad \times \quad\left[\sum_{j k}\left(X_{i j k l}^{0}-X_{i j k}^{0} X_{I K l}^{0}-X_{j k l}^{0} X_{i J L}^{0}\right)\right. \\
& \quad \times \quad\left|\mathcal{M}_{m}\left(p_{1}, \ldots, \tilde{p}_{I}, \tilde{p}_{L}, \ldots, p_{m+2}\right)\right|^{2} J_{m}^{(m)}\left(p_{1}, \ldots, \tilde{p}_{I}, \tilde{p}_{L}, \ldots, p_{m+2}\right)
\end{aligned}
$$

- $X_{i j k l}^{0}$: four-parton tree-level antenna function contains all double unresolved p_{j}, p_{k} limits of $\left|\mathcal{M}_{m+2}\right|^{2}$, but is also singular in single unresolved limits of p_{j} or p_{k}
- $X_{i j k}^{0} X_{I K l}^{0}$: cancels single unresolved limit in p_{j} of $X_{i j k l}^{0}$
- $X_{j k l}^{0} X_{i K L}^{0}$: cancels single unresolved limit in p_{k} of $X_{i j k l}^{0}$
- Triple-collinear, soft-collinear, double soft limits: $X_{i j k}^{0} X_{I K l}^{0}, X_{j k l}^{0} X_{i K L}^{0} \rightarrow 0$
- Double single collinear limit: $X_{i j k}^{0} X_{I K l}^{0}, X_{j k l}^{0} X_{i K L}^{0} \neq 0$ cancels with double single collinear limit of $\mathrm{d} \sigma_{N N L O}^{S, a}$

Double Real Subtraction

Two colour-connected unresolved partons

$$
\begin{gathered}
X_{i j k l}^{0}=S_{i j k l, I L} \frac{\left|M_{i j k l}^{0}\right|^{2}}{\left|M_{I L}^{0}\right|^{2}} \\
\mathrm{~d} \Phi_{X_{i j k l}}=\frac{\mathrm{d} \Phi_{4}}{P_{2}}
\end{gathered}
$$

Phase space factorisation
$\mathrm{d} \Phi_{m+2}\left(p_{1}, \ldots, p_{m+2} ; q\right)=\mathrm{d} \Phi_{m}\left(p_{1}, \ldots, \tilde{p}_{I}, \tilde{p}_{L}, \ldots, p_{m+2} ; q\right) \cdot \mathrm{d} \Phi_{X_{i j k l}}\left(p_{i}, p_{j}, p_{k}, p_{l} ; \tilde{p}_{I}+\tilde{p}_{L}\right)$
Integrated subtraction term (analytically)

$$
\left|\mathcal{M}_{m}\right|^{2} J_{m}^{(m)} \mathrm{d} \Phi_{m} \int \mathrm{~d} \Phi_{X_{i j k l}} X_{i j k l}^{0} \sim\left|\mathcal{M}_{m}\right|^{2} J_{m}^{(m)} \mathrm{d} \Phi_{m} \int \mathrm{~d} \Phi_{4}\left|M_{i j k l}^{0}\right|^{2}
$$

Four-particle inclusive phase space integrals are known
T. Gehrmann, G. Heinrich, AG

Colour-ordered antenna functions

Antenna functions

- colour-ordered pair of hard partons (radiators) with radiation in between
- hard quark-antiquark pair
- hard quark-gluon pair
- hard gluon-gluon pair
- three-parton antenna \longrightarrow one unresolved parton
- four-parton antenna \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements, normalised to two-parton matrix elements

Antenna functions

Quark-antiquark

consider subleading colour (gluons photon-like)

with

$$
X_{132}=\frac{\left|M_{q \bar{q} q}\right|^{2}}{\left|M_{q \bar{q}}\right|^{2}} \equiv A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)
$$

Antenna functions

Quark-gluon

$$
\left|M_{q \bar{q} q \bar{q} g}\right|^{2}(1,3,4,5,2) \xrightarrow{3 \| 4}\left|M_{q \bar{q} g g}\right|^{2}(\widetilde{13}, \widetilde{34}, 5,2) \times X_{134}
$$

with hard radiators:
quark $(\widetilde{13})$ and gluon $(\widetilde{34})$
 $q(\widetilde{13}): \quad$ spin $1 / 2$, colour triplet $g(\widetilde{34}) \quad$: \quad spin 1 , colour octet

Off-shell matrix element: violates $S U(3)$ gauge invariance

Antenna functions

Quark-gluon

Construct colour-ordered $q g$ antenna function from $S U(3)$ gauge-invariant decay: neutralino \rightarrow gluino + gluon (AG, T. Gehrmann, E.W.N. Glover)

$\tilde{\chi}: \operatorname{spin} 1 / 2$, colour singlet
$\tilde{g}: \quad \operatorname{spin} 1 / 2$, colour octet
$g: \quad$ spin 1 , colour octet
Gluino \tilde{g} mimics quark and antiquark (same Dirac structure), but is octet in colour space
$\tilde{\chi} \rightarrow \tilde{g} g$ described by effective Lagrangian

H. Haber, D. Wyler

$$
\mathcal{L}_{\mathrm{int}}=i \eta \bar{\psi}{ }_{\tilde{g}}^{a} \sigma^{\mu \nu} \psi_{\tilde{\chi}} F_{\mu \nu}^{a}+\text { (h.c.) }
$$

Antenna function

$$
X_{134}=\frac{\left|M_{\tilde{q} q^{\prime} \bar{q}^{\prime}}\right|^{2}}{\left|M_{\tilde{g} g}\right|^{2}} \equiv E_{3}^{0}\left(1_{q}, 3_{q^{\prime}}, 4_{\bar{q}^{\prime}}\right)
$$

Antenna functions

Gluon-gluon

$$
\left|M_{q \bar{q} g g g g}\right|^{2}(1,3,4,5,2) \xrightarrow{3 \| 4}\left|M_{q \bar{q} g g}\right|^{2}(1, \widetilde{34}, \widetilde{45}, 2) \times X_{345}
$$

$H \rightarrow g g$ described by effective Lagrangian

Antenna function

$$
X_{345}=\frac{\left|M_{g g g}\right|^{2}}{\left|M_{g g}\right|^{2}} \equiv F_{3}^{0}\left(3_{g}, 4_{g}, 5_{g}\right)
$$

Antenna functions

tree level
one loop
quark-antiquark

```
\(q g \bar{q} \quad A_{3}^{0}(q, g, \bar{q}) \quad A_{3}^{1}(q, g, \bar{q}), \tilde{A}_{3}^{1}(q, g, \bar{q}), \hat{A}_{3}^{1}(q, g, \bar{q})\)
\(q g g \bar{q} \quad A_{4}^{0}(q, g, g, \bar{q}), \tilde{A}_{4}^{0}(q, g, g, \bar{q})\)
\(q q^{\prime} \bar{q}^{\prime} \bar{q} \quad B_{4}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}, \bar{q}\right)\)
\(q q \bar{q} \bar{q} \quad C_{4}^{0}(q, q, \bar{q}, \bar{q})\)
```

quark-gluon

$q g g$	$D_{3}^{0}(q, g, g)$	$D_{3}^{1}(q, g, g), \hat{D}_{3}^{1}(q, g, g)$
$q g g g$	$D_{4}^{0}(q, g, g, g)$	
$q q^{\prime} \bar{q}^{\prime}$	$E_{3}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}\right)$	$E_{3}^{1}\left(q, q^{\prime}, \bar{q}^{\prime}\right), \tilde{E}_{3}^{1}\left(q, q^{\prime}, \bar{q}^{\prime}\right), \hat{E}_{3}^{1}\left(q, q^{\prime}, \bar{q}^{\prime}\right)$
$q q^{\prime} \bar{q}^{\prime} g$	$E_{4}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}, g\right), \tilde{E}_{4}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}, g\right)$	

gluon-gluon

$g g g$	$F_{3}^{0}(g, g, g)$	$F_{3}^{1}(g, g, g), \hat{F}_{3}^{1}(g, g, g)$
$g g g g$	$F_{4}^{0}(g, g, g, g)$	
$g q \bar{q}$	$G_{3}^{0}(g, q, \bar{q})$	$G_{3}^{1}(g, q, \bar{q}), \tilde{G}_{3}^{1}(g, q, \bar{q}), \hat{G}_{3}^{1}(g, q, \bar{q})$
$g q \bar{q} g$	$G_{4}^{0}(g, q, \bar{q}, g), \tilde{G}_{4}^{0}(g, q, \bar{q}, g)$	
$q \bar{q} q^{\prime} \bar{q}^{\prime}$	$H_{4}^{0}\left(q, \bar{q}, q^{\prime}, \bar{q}^{\prime}\right)$	

Antenna functions

Numerical implementation

- requires partonic emissions to be ordered
- two hard radiators identified uniquely (not a priori the case for $q g$ and $g g$)
- each unresolved parton can only be singular with its two adjacent partons
- need to separate
- multiple antenna configurations in single antenna function
(e.g. $F\left(3_{g}, 4_{g}, 5_{g}\right)$ contains three configurations: (345), (453), (534))
- non-ordered emission (if gluons are photon-like)
- all ordered forms (obtained by partial fractioning) of a given antenna function have
- the same phase space factorisation
- different phase space mappings (D. Kosower)

$e^{+} e^{-} \rightarrow 3$ jets at NNLO

First applications of antenna subtraction

- NNLO corrections to $1 / N^{2}$ colour factor in $e^{+} e^{-} \rightarrow 3$ jets
(\longrightarrow talk of T. Gehrmann)
- constructed 5-parton and 4-parton subtraction terms
- 5-parton channel numerically finite in all single and double unresolved regions
- 4-parton channel free of explicit $1 / \epsilon$ poles and numerically finite in all single unresolved regions
- 3-parton channel free of explicit $1 / \epsilon$ poles

$$
\mathcal{P o l e s}\left(\mathrm{d} \sigma_{N N L O}^{S}+\mathrm{d} \sigma_{N N L O}^{V S, 1}+\mathrm{d} \sigma_{N N L O}^{V, 2}\right)=0
$$

- explicit infrared pole terms of $\mathrm{d} \sigma_{N N L O}^{V, 2}$ can be expressed by integrated antenna functions for all colour factors

Summary

Main features of antenna subtraction at NNLO

- building blocks of subtraction terms: 3 and 4 parton antenna functions
- antenna functions are derived from physical $|\mathcal{M}|^{2}$
- quark-antiquark: $\gamma^{*} \rightarrow q \bar{q}+X$
- quark-gluon: $\tilde{\chi} \rightarrow \tilde{g} g+X$
- gluon-gluon: $H \rightarrow g g+X$
- subtraction terms:
- approximate correctly the full $|\mathcal{M}|^{2}$ (double real)
- do not oversubtract
- can be integrated analytically
- in progress: all colour factors in 3-jet rate
- possible extensions: lepton-hadron, hadron-hadron; same antenna functions, but different phase space

