SUSY-MADGRAPH

David Rainwater

University of Rochester

LoopFest 2005, Snowmass

- SUSY MadGraph
- WBF SUSY pairs
- QCD SUSY pairs plus jets

MADGRAPH: [Stelzer & Long 1994]

Tool for generating Fortran code to calculate matrix elements.

(Fairly) recent additions: "MADGRAPH II"

- color subamps match PSMC color flows (QCD L.H. accord)
- · can define Majorana fermions (uses Denner scheme)
- "arbitrary" number of external particles
- · can specify inclusion/exclusion of intermediate states

MADEVENT: [Stelzer & Maltoni 2001]

Web-based, CompHEP-like front end:

calculates collider σ 's w/ kinematic cuts, makes plots.

Parallelized! 22 nodes (64 nodes at Rome soon)

Majorana fermions in MadGraph II

Example of Denner scheme implementation: $uu \rightarrow u_L u_L$ (*t*-channel gluino)

Clashing arrows at fermion vertices!

Use charge-conjugate (CC) wave function for $u(p_2)$ and CC vertex at clashing arrows: only 1 overall fermion flow needs to be defined, no ambiguity and no worry over extra (-) signs internally.

Package is standard MADGRAPH II plus:

- 1. MSSM model input files (particles, interactions)
- 2. routine to read SUSY Les Houches Accord spectrum input
- 3. routine to calculate MSSM couplings

Improvements over previously available tools:

- full spin correlations to final state
- higher-order SUSY processes trivial
- consistent theoretical treatment of couplings

Testing SUSY MADGRAPH:

- \rightarrow all $e^+e^- \rightarrow$ SUSY pairs checked with literature
- $\rightarrow\,$ all $pp\rightarrow\,$ SUSY pairs in Prospino checked
- $\rightarrow\,$ all possible $VV,VH\rightarrow\,$ SUSY pairs checked for unitarity
- \rightarrow >375-process comparison with Whizard & Sherpa

SUSY MadGraph sundry technical details

- R-parity conserving MSSM
- no CP violation (but user could straightforwardly add)
- · diagonal CKM
- no SUSY breaking scheme assumed, because:
- spectrum & parameters taken from SLHA input files, so order of masses/mixings externally governed;
 sparticle widths taken from Sdecay SLHA files
- \cdot ino mixing matrices taken to be real
 - \rightarrow negative ino masses OK in matrix elements
- \cdot no quartic scalar couplings (useless for collider physics)

Particles data file (sample)

#Name anti_Name Spin Linetype Mass Width Color Label Model # Quarks t t \sim F S MT WT T t XXX # Squarks dl dl \sim S D MDL WDL T dl XXX # Leptons e- e+ F S ZERO ZERO S e XXX # Sleptons el- el+ S D MEL WEL S el XXX sve sve \sim S D MVE WVE S ve XXX # Vector Bosons q q V C ZERO ZERO O _ XXX z z V W MZ WZ S Z XXX w- w+ V W MW WW S W XXX # Higgs h1 h1 S D MH1 WH1 S h XXX h- h+ S D MHC WHC S hc XXX # Inos qo qo F S MGO WGO O q XXX n1 n1 F S MN1 WN1 S N1 XXX x1- x1+ F S MX1 WX1 S X1 XXX

Interactions data file (sample) [>800 lines]

FFV (weak inos) n1 n3 z GZN13 QED x1- x2- z GZX12 OED n1 x1- w+ GWN1X1 OED # FFS (Yukawa) b b h2 GH2BB QED # FFS (gluinos) d qo dl GQLGOM QCD qo d dl∼ GQLGOP QCD # FFS (Higgs and weak inos) x1- x2- h1 GH1X12 OED x2- x1- h1 GH1X21 QED # VSS QED non-Higgs z dl dl \sim GZDLDL QED # VSS Higgs w+ h- h1 GWHCH1 QED # SSS Higgs-sfermion h1 t1 t1∼ GH1T1T1 QED # VVSS mixed QCD-QED q a dl dl \sim GGADLDL DUM QCD QED # VVSS QED Higgs z z h1 h1 GZZH1H1 DUM OED OED

EW parameters and SUSY scattering

Warning! – blind use of SUSY spectrum generator input will yield unitarity violation for $VV \rightarrow \chi_i \chi_j$ (discovered in testing)

Reason: for unitarity cancellation, need exact match between g_w at interactions vertices with $g_w v$ (M_V) in weak ino fermion masses.

 \rightarrow extract EW info from ino mixings

Effective EW parameters from ino mixing matrices

SUSY spectrum generators run EW parameters to SUSY scale to compute ino mixing matrices - mismatch with weak-scale values. Assume the LO form for the matrices:

 $\begin{pmatrix} m_{\tilde{B}} & 0 & -m_Z s_w c_\beta & m_Z s_w s_\beta \\ 0 & m_{\tilde{W}} & m_Z c_w c_\beta & -m_Z c_w s_\beta \\ -m_Z s_w c_\beta & m_Z c_w c_\beta & 0 & -\mu \\ m_Z s_w s_\beta & -m_Z c_w s_\beta & -\mu & 0 \end{pmatrix}, \begin{pmatrix} m_{\tilde{W}} & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & -\mu \end{pmatrix}$

- 1. knowing μ , tan β , $m_{\tilde{W}}$ and $m_{\tilde{B}}$, extract m_Z , m_W and \sin^2_W in the on-shell scheme (sin² $\theta_W = 1 - M_W^2/M_Z^2$)
- 2. then choose G_F as the 3rd EW input parameter and go on
- \rightarrow preserves unitarity of $VV\rightarrow XX$ scattering
- \cdot don't know if this is necessary for LHC calc's 10% diffs?
- \cdot holds to all EW order? dunno \longrightarrow we will check...

WBF SUSY PAIRS AT LHC

[Cho, Hagiwara, Kanzaki, Plehn, DR, Stelzer (preliminary)] Idea: weak boson fusion production of weakly-interacting particles (Higgs) can reduce backgrounds - works for SUSY? [charginos: Datta, Konar, Mukhopadhyaya, 2001; sleptons: D. Choudhury et al., 2003] Previous studies reported mixed results for chargino visibility,

positive results for sleptons.

Examine $\chi_i^0\chi_j^0$, $\chi_i^0\chi_j^{\pm}$, $\chi_i^+\chi_j^-$, $\chi_i^{\pm}\chi_j^{\pm}$, $\tilde{\ell}^{\pm}\tilde{\nu}$, $\tilde{\ell}^+\tilde{\ell}^-$ in WBF

Comparison with previous analyses:

mostly agreement, huge difference for $\tilde{\ell}^{\pm}\tilde{\nu}$

(previous calculations were only WBF, ignored Brem. diagrams)

 $\sim 10\%$ difference w/wout EW ripping scheme; particle widths < 1% effect.

WBF xsecs shown do not apply "tagging jet" cuts; cuts would reduce rates by factor $\sim 2-4$

- Note: do NOT need tagging jet cuts for $\chi_1^+\chi_1^+$; channel will be difficult, maybe marginal, but worth pursuing
- ► WBF $\tilde{e}_L \tilde{\nu}$ seems to disagree with literature, but very difficult to compare precisely

► WBF stau pairs comparable to DY! could double LHC rate

SPS	1a	1b	2	3	4	5	6	7	8	9
$ ilde{ au}_1^+ ilde{ au}_1^-$	26.3	14.9	0.012	18.4	9.0	17.0	11.2	30.0	18.9	4.4
$ ilde{ au}_1^+ ilde{ au}_2^-$	0.005	0.002	0	0.001	0.001	0.002	0	0.002	0	0
$\tilde{ au}_2^+ \tilde{ au}_2^-$	14.2	4.9	0.011	7.3	3.0	9.2	4.4	9.3	4.6	3.3

(these x-secs with rapidity gap: $\triangle R(jj) > 4.2$)

QCD SUSY PAIRS + JETS AT LHC

- Squarks and gluinos easily discovered at LHC:
- high- p_T multijets + leptons signal
- via cascade decays

- mass diff.'s via jet/lep "edges" [Hinchliffe & Paige; Allanach et al.]
- ▶ $\tilde{g}\tilde{g}, \tilde{g}\tilde{q}, \tilde{q}\tilde{q}$ samples separated by # of hard jets

How many hard jets does QCD give in SUSY events?

[Plehn, DR, using SMADEVENT]

► extra hard jets affect cascade studies - how many are there? NLO $\tilde{g}\tilde{g}j$, $\tilde{q}\tilde{q}^*j$ rates not known, but can calc. hard real emission Generate events with $p_T(j) > 50(100)$ GeV at LHC: 600 GeV top quarks, gluino pairs, $\tilde{u}_L + \tilde{q}$ [SPS1a]

	$\sigma_{T\bar{T}}$	$\sigma_{\widetilde{g}\widetilde{g}}$	$\sigma_{\widetilde{q}\widetilde{g}}$
Oj	1.30 (1.30)	4.83 (4.83)	5.65 (5.65)
1j	1.50 (0.73)	5.91 (2.89)	5.38 (2.74)
2ј	1.21 (0.26)	4.16 (1.09)	3.18 (0.85)

 $\cdot +1j, 2j$ is so large because of flavor unlocking of initial state

· question: at which p_T is the Sudakov factor important?

$\tilde{g}\tilde{g}$ plus jets for SPS1a [Plehn, DR, Skands, preliminary]

PYTHIA 6.3 normalized to NLO rate (PROSPINO)

- Q^2 -ordered shower great for 1j, drastically low for 2j
- p_T^2 -ordered shower too hard for 1j, funny shape for 2j
- M.E. valid for $p_T \gtrsim 100 \text{ GeV} \rightarrow \text{due to } \log(\frac{M}{p_T})$

$\tilde{u}_L \tilde{g}$ plus jets for SPS1a [Plehn, DR, Skands, preliminary]

PYTHIA 6.3 normalized to NLO rate (PROSPINO)

- same general conclusions as for $\tilde{g}\tilde{g}$ + jets

Remaining work to be done: [Plehn, DR, Skands]

- · compare Pythia & M.E. angular dist'bns in progress
- understand M.E. matching future task

Keep in mind: non-trivial uncertainty for both M.E. and Pythia over <u>amount</u> of extra jet radiation.

- \rightarrow need study of $t\bar{t}$ +jets @ Tev2 (help tune Pythia)
- \rightarrow need full NLO calculation of $t \overline{t} j$ [in progress: Brandenburg, Dittmaier, Uwer, Weinzier]
- \rightarrow must include matrix elements for $\tilde{g}\tilde{g}j$, $\tilde{g}\tilde{q}j$, $\tilde{q}\tilde{q}j$ in Pythia (Sherpa can already do this)
- \rightarrow Pythia will have to be tuned!

SUMMARY

- SUSY MadGraph/MadEvent: new tools for complete calculations of MSSM processes at colliders
- some interesting theory issues on consistent treatment of couplings, but does not appear to affect LHC pheno
- WBF colorless SUSY pairs xsec's small, but some may be interesting - needs further study
- heavy colored SUSY pairs + jets will affect LHC cascade decay pheno, but investigations still in early stages
- mixed-flavor production promising for extracting SUSY parameters (but difficult)