Progress on VirCol
 A Parton Shower MC based on Antenna Formalism

QCD at High Energies

QCD at High Energies

QCD at High Energies

Hard is Siofi

Matrix Elements (Fixed Order):

- Fixed order in α-> Exact interference, helicity, loops, ...
- At present can do 2->5/ 6 (less with loops)
-Perturbative expansion better at higher energy (asymptotic freedom)
- Multiple soft emissions important for full event structure =exclusive observables
- Widely separated scales -> big logs / big truncation errors.
-Phase space for soft emissions increases at high energies

Hard \& Soft

Matrix Elements (Fixed Order):

- Fixed order in α-> Exact interference, helicity, loops, ...
- At present can do 2->5/ 6 (less with loops)
-Perturbative expansion better at higher energy (asymptotic freedom)
- Multiple soft emissions important for full event structure =exclusive observables
-Widely separated scales -> big logs / big truncation errors.
-Phase space for soft emissions increases at high energies

Parton Showers:

- Derived in universal limit of QCD \rightarrow depend on universal parameters
- Exponentiate \rightarrow infinite $\mathrm{O}(\alpha) \rightarrow$ ideal for widely separated scales (logs resummed)
- Arbitrary number of partons in final state \rightarrow match to hadronisation descriptions
- Derived in limit (collinear) of QCD \rightarrow approx. for wide-angle / hard emissions.

Hard \& Soft

Matrix Elements (Fixed Order):

- Fixed order in α-> Exact interference, helicity, loops, ...
- At present can do 2->5/ 6 (less with loops)
-Perturbative expansion better at higher energy (asymptotic freedom)
- Multiple soft emissions important for full event structure =exclusive observables
-Widely separated scales -> big logs / big truncation errors.

- Phase space for soft emissions increases at high ens

Marriage desireable!!

Parton Showers:

- Derived in universal limit of QCD \rightarrow depend on universal parameters
-Exponentiate \rightarrow infinite $\mathrm{O}(\alpha) \rightarrow$ ideal for widely separated scales (logs resummed)
- Arbitrary number of partons in final state \rightarrow match to hadronisation descriptions
- Derived in limit (collinear) of QCD \rightarrow approx. for wide-angle / hard emissions.

Possible Ceremonies

1. Merging (old) (HERWG, PYTHA, ARIADNE)

Vircol - Basic SKETCH

- Perturbative expansion for some observable J,

$$
\mathrm{d} \sigma=\Sigma_{\mathrm{m}=0} \mathrm{~d} \sigma_{\mathrm{m}} \quad ; \quad \mathrm{d} \sigma_{\mathrm{m}}=\mathrm{d} \Pi_{\mathrm{m}}|\mathrm{M}|^{2} \delta\left(\mathrm{~J}-\mathrm{J}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}\right)\right)
$$

- Assume we know some Matrix Elements

$$
\mathrm{d} \mathrm{\sigma}_{0}, \mathrm{~d} \mathrm{\sigma}_{1}, \ldots \mathrm{~d} \mathrm{\sigma}_{\mathrm{n}} \quad \text { (w or w/ o loops) }
$$

- And we have some approximation $\mathrm{T}_{\mathrm{n} \rightarrow \mathrm{n}+1}$, so that

$$
\mathrm{d} \mathrm{\sigma}_{\mathrm{n}+1} \sim \mathrm{~T}_{\mathrm{n} \rightarrow \mathrm{n+1}} \mathrm{~d} \mathrm{\sigma}_{\mathrm{n}} \quad(\sim \text { parton shower) }
$$

- A 'best guess' cross section is then:

$$
\begin{aligned}
& d \sigma \sim d \sigma_{0}+d \sigma_{1}+\ldots+d \sigma_{n}\left(1+T_{n \rightarrow n+1}+T_{n \rightarrow n+1} T_{n+1 \rightarrow n+2}+\ldots\right) \\
& \Rightarrow \quad d \sigma \sim d \sigma_{0}+d \sigma_{1}+\ldots+d \sigma_{n} S_{n} \quad ; \quad S_{n}=1+T_{n \rightarrow n+1} S_{n+1}
\end{aligned}
$$

- For this to make sense, the $\mathrm{T}_{\mathrm{n} \rightarrow \mathrm{n}+1}$ have to at least contain the correct singularities (in order to correctly sum up all logarithmically enhanced terms), but they are otherwise arbitrary.
- We will now reorder this series in a useful way ...

Reordering example: $\mathrm{h} \rightarrow \mathrm{gg}$

- Assume we know ME for $\mathrm{H} \rightarrow \mathrm{gg}$ and $\mathrm{H} \rightarrow$ ggg. Then reorder:

- I.e shower off gg and modified ggg matrix element.
- Double counting avoided since singularities/ shower subtracted in $\mathrm{d} \chi_{\mathrm{ggg}}$.

What IS THE Difference?

CKKW (\& friends) in a nutshell:

1. Generate a n-j et Final State from n-jet (singular) ME.
2. Construct a "fake" PS history.
3. Apply Sudakov weights on each "line" in history \rightarrow from inclusive n-j et ME to exclusive n-j et (i.e. probability that n-j et FS remains n-j et above cutoff) \rightarrow gets rid of double counting when mixed with other ME's (Sudakov wt dampens singularity).
4. Apply PS with no emissions above cutoff.

VirCol in a nutshell:

1. Subtract PS singularities from n-j et ME (antenna subtraction)
2. Generate a n-j et Final State from the subtracted (finite) ME.
3. Apply PS \rightarrow Leading Logs resummed.
+full NLO: divergent part already there = unitarity of shower assumption \rightarrow just include extra finite contribution in $\mathrm{d} \mathrm{\sigma}_{0}$: $\mathrm{d} \sigma=\mathrm{d} \mathrm{\sigma}_{0}{ }^{(0)}+\mathrm{d} \mathrm{\sigma}_{1}{ }^{(0)}+\operatorname{sing}\left[\mathrm{d} \mathrm{\sigma}_{0}{ }^{(1)}\right]+\mathrm{F}^{(1)}+\ldots$

+ now NNLO/ NLL possible \rightarrow talks by Gehrmann, Gehrmann-De Ridder

The ANTENNA Shower

- So far, we have written a C++code that (for the moment) generates a pure gluon cascade ordered in:
$\mathrm{y}_{\mathrm{R}}=4 \mathrm{~s}_{\mathrm{a} 1} \mathrm{~s}_{\mathrm{lb}} / \mathrm{s}^{2}{ }_{\mathrm{a} 1 \mathrm{~b}}=4 \mathrm{p}_{\mathrm{T} ; \mathrm{ARIADNE}} / \mathrm{s}_{\mathrm{a} 1 \mathrm{~b}}$
- .. with the antenna / subtraction function:
$|\mathrm{A}(\mathrm{a}, \mathrm{b} \rightarrow \mathrm{a}, 1, \mathrm{~b})|^{2}=$
$2\left(\mathrm{~s}_{\mathrm{a} 1 \mathrm{~b}}\left(\mathrm{~s}_{\mathrm{a} 1}+\mathrm{s}_{1 \mathrm{~b}}\right)+\mathrm{s}_{\mathrm{ab}}{ }^{2}\right)^{2} /\left(\mathrm{s}_{\mathrm{a} 1} \mathrm{~s}_{\mathrm{lb}}\left(\mathrm{s}_{\mathrm{a} 1 \mathrm{~b}} \mathrm{~s}_{\mathrm{ab}}+\mathrm{s}_{\mathrm{a} 1} \mathrm{~s}_{1 \mathrm{~b}}\right) \mathrm{s}_{\mathrm{a} 1 \mathrm{~b}}\right)$
\rightarrow "usual" collinear limit, but different outside.
- This gives an analytical Sudakov integral = [Mathematica output] .

- (No Matrix Elements yet . . . but work in progress).

The ANTENINA Shower
 Ant2

- So far, w generate
$\mathrm{y}_{\mathrm{R}}=4 \mathrm{~s}_{\mathrm{a1} 1} \mathrm{~S}^{1}$
$\square \quad \ldots$ with th
$\mid \mathrm{A}(\mathrm{a}, \mathrm{b} \rightarrow \mathrm{a}$
$2\left(\mathrm{~S}_{\mathrm{a} 1 \mathrm{~b}}\left(\mathrm{~S}_{\mathrm{a} 1}{ }^{+}\right.\right.$
\rightarrow "usual
- This give
$=[\mathrm{M}$
- (No Matr

Collinear

8

Resolution \& sharing

- Sudakov $\rightarrow \mathrm{y}_{\mathrm{R}}$ for next branch \rightarrow select phase space point along iso $-\mathrm{y}_{\mathrm{R}}$ contour:

1. Rewrite Antenna function in terms of $y^{2}=y_{R}$;

$$
\begin{aligned}
& \xi=\left(\mathrm{s}_{\mathrm{al}}+\mathrm{s}_{1 \mathrm{~b}}\right) /{ }^{\mathrm{R}}{ }_{1} \\
& { }_{0}^{1} d y \frac{1}{y} R_{1=y} d » \frac{\left(» y+(1 i » y)^{2}\right)^{2}}{1+y^{2}=4 i} \gg \frac{1}{>^{2} i 1}
\end{aligned}
$$

2. Partial-fraction singular structure +overestimate numerators \rightarrow generate uniform R and solve for $\xi_{R} ; \Pi$

$$
R=R_{1}^{R_{>R}} d » \frac{A(y ;>)}{1 i>y+y^{2}=4}+\frac{\beta(y ;>)}{\nu_{2} i 1}
$$

Resolution \& sharing

1st Branching: y1b vs ya1

1st Branching: y1b vs ya1

Resolution \& sharing

- Q1: Where's the soft singularity?

1st Branching: y1b vs ya1

Resolution \& sharing

- Q1: Where's the soft singularity?

1st Branching: y1b vs ya1

- A1: Sudakov suppressed, (sum of ordered branching probs \rightarrow unordered probability)

\section*{| y1b vs ya1 |
| :--- |}

Resolution \& sharing

- Q1: Where's the soft singularity?
- Q2: Is that a ' dead region' ?

18t Aranching: y1b vs ya1

Resolution \& sharing

- Q1: Where's the soft singularity?
- Q2: Is that a 'dead region' ?
- A2: Yes, it is cut out by 'unresolution criterion', i.e. that neighbour dipoles remain resolved after branching.
- Due to $\mathrm{H} \rightarrow$ gg in colour singlet state! (pathological)
- Eventually, could be filled by Matrix Elements and/ or by changing evolution var.

Preliminary Results

- Thrust and 3-jet rate, compared to Q²-ordered and $\mathrm{p}_{\mathrm{T}}{ }^{2}$-ordered PYTHIA showers.

3-Jet Rate vs log(y_cut)

- Preliminary: matrix elements should be added and parton-level matched to hadronisation models eventually + all showers only include gluons here...

Conclusion \& Outlook

- Construction of VIRCOL shower monte carlo:
- gluons shower MC (based on LO, done!)
- gluons shower MC (based on NLO)
- parton shower MC (LO/ NLO(/ NNLO))
- parton shower MC (NLL + NLO/ NNLO)
- Hadron collider shower MC's
- Higher order Sudakov factor calculations(this will reduce a lot of implicit and explicit uncertainties: e. g. renormalization scale, choice of subtraction function, ..)

