Constraining New Models with Precision Electroweak Data

Tadas Krupovnickas, BNL

in collaboration with

Mu-Chun Chen and Sally Dawson

LoopFest IV, Snowmass, 2005

EW Sector of the Standard Model

3 parameters in the gauge boson+Higgs sector: g, g' and v. Plus masses of Higgs boson and fermions. α, G_{μ} and M_Z usually chosen as 3 inputs:

$$g^2 = \frac{4\pi\alpha}{s_W^2}, \qquad g'^2 = \frac{4\pi\alpha}{c_W^2}, \qquad v^2 = \frac{1}{(\sqrt{2}G_\mu)^{\frac{1}{2}}}.$$

Custodial symmetry $SU(2)_c$ is present in the SM. It guarantees that at tree level

$$\rho \equiv \frac{M_W^2}{M_Z^2 c_W^2} = 1.$$

Then s_W is an output of the calculation:

$$s_W^2 c_W^2 = \frac{\pi \alpha}{\sqrt{2} G_\mu M_Z^2}.$$

Tree-level relation $\rho = 1$ remains correct for:

- \bullet SM extensions with extra generations of fermions
- MSSM
- etc.

LEP EW WG (Summer 2005)

If a new model predicts some deviation from the SM in the EW observables, it has to be small.

The Usual

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{NEW},$$

where

$$\mathcal{L}_{NEW} = \Sigma_i c_i \frac{O_i}{\Lambda^2}.$$

Common assumptions:

1. Use the SM renormalization procedure with new particles in the loops.

2. As $\Lambda \to \infty$, New Physics effects become small.

If $\rho = 1$ at tree level, this is correct.

SM Renormalization

At tree level:

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} s_W^2 c_W^2 M_Z^2 \rho}, \quad \rho \equiv \frac{M_W^2}{M_Z^2 c_W^2} = 1.$$

One loop result (on-shell definition):

$$M_W^2 = \frac{\pi \alpha}{\sqrt{2} s_W^2 G_\mu (1 - \Delta r_{SM})}, \quad s_W^2 = 1 - \frac{M_W^2}{M_Z^2}.$$

Here Δr_{SM} collects all radiative corrections:

$$\Delta r_{SM} = -\frac{\delta G_{\mu}}{G_{\mu}} + \frac{\delta \alpha}{\alpha} - \frac{\delta s_W^2}{s_W^2} - \frac{\delta M_W^2}{M_W^2}$$

The SM is non-trivially constrained because of custodial symmetry ($\rho = 1$):

$$\frac{\delta s_W^2}{s_W^2} = \frac{c_W^2}{s_W^2} \left[\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right] \sim m_t^2.$$

 M_W and s_W^2 are outputs. G_μ , α and M_Z + all fermion and Higgs boson masses are inputs.

SM Prediction for $M_W(m_t)$

In terms of 2-point functions

$$\Delta r_{SM} = \frac{\Pi_{WW}(0) - \Pi_{WW}(M_W^2)}{M_W^2} + \Pi_{\gamma\gamma}'(0) + 2\frac{s_W}{c_W}\frac{\Pi_{\gamma Z}(0)}{M_Z^2} - \frac{c_W^2}{s_W^2} \left[\frac{\Pi_{ZZ}(M_Z^2)}{M_Z^2} - \frac{\Pi_{WW}(M_W^2)}{M_W^2}\right].$$

For large m_t top quark-dependent part:

$$\Delta r_{SM}^t \approx -\frac{3G_\mu}{\sqrt{28}\pi^2} \frac{c_W^2}{s_W^2} m_t^2.$$

A good approximation for Δr is:

$$\Delta r_{SM} \approx 0.067 + \Delta r_{SM}^t + \frac{\alpha}{\pi s_W^2} \frac{11}{48} \left(\ln \frac{M_H^2}{M_Z^2} - \frac{5}{6} \right) + \dots$$

The Simplest Example: SM + Higgs Triplet

B. W. Lynn and E. Nardi, Nucl.Phys.B381:467-500,1992,

T. Blank and W. Hollik, Nucl.Phys.B514:113-134,1998,

M.-C. Chen, S. Dawson and T. K., hep-ph/0504286.

Add a real Higgs triplet to the SM:

$$H = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v + \phi_R^0 + \mathrm{i}\phi_I^0) \end{pmatrix}, \quad \Phi = \begin{pmatrix} \eta^+ \\ \frac{1}{2}v' + \eta^0 \\ -\eta^- \end{pmatrix}$$

Assume that triplet does not couple to fermions. The set of model parameters becomes:

g, g', v and v'+ fermion masses and the masses of the Higgses: m_{H^0}, m_{K^0} and $m_{H^{\pm}}$. In this model

 \cap

$$c_{\theta}^2 = \frac{g^2}{g^2 + {g'}^2},$$

$$M_Z^2 = \frac{1}{4}(g^2 + {g'}^2) \ v^2, \quad M_W^2 = \frac{1}{4}g^2(v^2 + {v'}^2).$$

And

$$\rho = 1 + \frac{{v'}^2}{v^2} \neq 1.$$

Higgs bosons mix:

 $\begin{pmatrix} H^0 \\ K^0 \end{pmatrix} = \begin{pmatrix} c_{\gamma} & s_{\gamma} \\ -s_{\gamma} & c_{\gamma} \end{pmatrix} \begin{pmatrix} \phi_R^0 \\ \eta^0 \end{pmatrix}, \quad \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\delta} & s_{\delta} \\ -s_{\delta} & c_{\delta} \end{pmatrix} \begin{pmatrix} \phi^{\pm} \\ \eta^{\pm} \end{pmatrix}.$ For simplicity set $\gamma = 0$. In terms of mixing angle $c_{\delta}^2 = \frac{v^2}{v^2 + v'^2}$:

$$M_W^2 = \frac{g^2 v^2}{4c_{\delta}^2}, \qquad \rho \equiv \frac{M_W^2}{M_Z^2 c_{\theta}^2} = \frac{1}{c_{\delta}^2} \ge 1.$$

 $\rho \approx 1$ experimentally $\Rightarrow v' \ll v$.

Renormalization

 s_{θ}^2 is no longer a calculable quantity. It has to be fixed by experiment. Choose effective leptonic mixing angle as input:

$$L = -i\bar{e}(v_e + \gamma_5 a_e)\gamma_{\mu}eZ^{\mu}, \quad v_e = \frac{1}{2} - 2s_{\theta}^2, \quad a_e = \frac{1}{2},$$
$$1 - 4s_{\theta}^2 \equiv \frac{\operatorname{Re}(v_e)}{\operatorname{Re}(a_e)}.$$

LEP result: $s_{\theta}^2 = 0.23150 \pm 0.00016$.

Return to muon decay:

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} s_{\theta}^2 c_{\theta}^2 M_Z^2 \rho (1 - \Delta r_{TM})},$$

where

$$\Delta r_{TM} = -\frac{\delta G_{\mu}}{G_{\mu}} + \frac{\delta \alpha}{\alpha} - \frac{\delta M_Z^2}{M_Z^2} - \frac{c_{\theta}^2 - s_{\theta}^2}{c_{\theta}^2} \frac{\delta s_{\theta}^2}{s_{\theta}^2} - \frac{\delta \rho}{\rho}.$$

In SM the following relation was used to derive s_{θ}^2 counterterm:

$$\frac{\delta\rho}{\rho} = \frac{\delta M_W^2}{M_W^2} - \frac{\delta M_Z^2}{M_Z^2} + \frac{s_W^2 \delta s_W^2}{c_W^2 s_W^2} = 0.$$

Now this relation can only be used as an expression for $\frac{\delta\rho}{\rho} \neq 0$. Do $Ze\bar{e}$ vertex renormalization to calculate: $\frac{\delta s_{\theta}^2}{s_{\theta}^2} = \frac{c_{\theta}}{s_{\theta}} \operatorname{Re} \left[\frac{\Pi_{\gamma z} (M_Z^2)}{M_Z^2} + \delta_{self-energy+vertex} \right].$ $\Pi_{\gamma z} (M_Z^2) \sim \ln \frac{m_t^2}{Q^2} \Rightarrow \frac{\delta s_{\theta}^2}{s_{\theta}^2} \sim \ln \frac{m_t^2}{Q^2}.$

Top quark dependence in TM

Put it all together:

$$\Delta r_{TM} = \frac{\Pi_{WW}(0) - \Pi_{WW}(M_W^2)}{M_W^2} + \Pi_{\gamma\gamma}'(0) + 2\frac{s_\theta}{c_\theta}\frac{\Pi_{\gamma Z}(0)}{M_Z^2}$$
$$- \frac{c_\theta}{s_\theta}\frac{\Pi_{\gamma Z}(M_Z^2)}{M_Z^2} + \delta_{self-energy+vertex+box}.$$

W mass is calculated from

$$M_W^2 = \frac{\pi\alpha}{\sqrt{2}G_\mu s_\theta^2 (1 - \Delta r_{TM})}$$

For large m_t : $M_W^2 \sim \ln \frac{m_t^2}{Q^2}!$

$M_W(Higgs)$

Higgs mass dependence is quadratic vs. logarithmic dependence in the SM!

If $M_{H^0} \approx M_{K^0} \approx M_{H^{\pm}}$, then

$$\begin{split} \Delta r_{TM}^{scalars} &\to \frac{\alpha}{4\pi s_{\theta}^{2}} [-\frac{1}{2} [c_{\delta}^{2} \frac{M_{H^{0}}^{2}}{M_{W}^{2}} \ln \frac{M_{H^{0}}^{2}}{M_{W}^{2}} + 4s_{\delta}^{2} \frac{M_{K^{0}}^{2}}{M_{W}^{2}} \ln \frac{M_{K^{0}}^{2}}{M_{W}^{2}} \\ &+ s_{\delta}^{2} \frac{M_{H^{\pm}}^{2} M_{Z}^{2}}{M_{W}^{4}} \ln \frac{M_{H^{\pm}}^{2}}{M_{W}^{2}}] \\ &+ \frac{5}{72} [s_{\delta}^{2} \frac{M_{H^{\pm}}^{2} - M_{H^{0}}^{2}}{M_{H^{0}}^{2}} + 4c_{\delta}^{2} \frac{M_{H^{\pm}}^{2} - M_{K^{0}}^{2}}{M_{K^{0}}^{2}}]]. \end{split}$$

If $M_{H^0} \ll M_{K^0} \approx M_{H^{\pm}}$, then

$$\begin{split} \Delta r_{TM}^{scalars} &\to \frac{\alpha}{4\pi s_{\theta}^{2}} [-\frac{1}{2} [c_{\delta}^{2} \frac{M_{H^{0}}^{2}}{M_{W}^{2}} \ln \frac{M_{H^{0}}^{2}}{M_{W}^{2}} + 4s_{\delta}^{2} \frac{M_{K^{0}}^{2}}{M_{W}^{2}} \ln \frac{M_{K^{0}}^{2}}{M_{W}^{2}} \\ &+ s_{\delta}^{2} \frac{M_{H^{\pm}}^{2} M_{Z}^{2}}{M_{W}^{4}} \ln \frac{M_{H^{\pm}}^{2}}{M_{W}^{2}}] \\ &- s_{\delta}^{2} \frac{M_{H^{\pm}}^{2} M_{H^{0}}^{2}}{2M_{W}^{4}} \ln \frac{M_{H^{\pm}}^{2}}{M_{H^{0}}^{2}} + \frac{5}{18} c_{\delta}^{2} \frac{M_{H^{\pm}}^{2} - M_{K^{0}}^{2}}{M_{K^{0}}^{2}}. \end{split}$$

Take $M_{K^0}=M_{H^\pm}>>M_{H^0}$ and assume $M_{H^0}\approx M_Z$:

$$\Delta r_{TM}^{scalars} \to -\frac{\alpha}{8\pi s_{\theta}^2} \left[c_{\delta}^2 \frac{M_{H^0}^2}{M_W^2} \ln \frac{M_{H^0}^2}{M_W^2} + 4s_{\delta}^2 \frac{M_{K^0}^2}{M_W^2} \ln \frac{M_{K^0}^2}{M_W^2} \right].$$

 $\begin{array}{l} {\rm Random \ scan \ over \ 1 \ TeV} < M_{H^0} < 3 \ {\rm TeV}, \ 1 \ {\rm TeV} < M_{K^0} < 3 \ {\rm TeV}, \\ 1 \ {\rm TeV} < M_{H^\pm} < 3 \ {\rm TeV}. \end{array}$

M.-C. Chen, S. Dawson and T. K., hep-ph/0504286.

EXPERIMENTAL ERROR IMPACT ON M_W PREDICTION. M.-C. Chen, S. Dawson and T. K., hep-ph/0504286.

(Non)-Decoupling

Shouldn't we recover the SM results when either 1. $m_{K^0} \to \infty$ and $m_{H^{\pm}} \to \infty$, or 2. $s_{\delta} \to 0$ (no mixing between η^{\pm} and ϕ^{\pm})? As long as $s_{\delta} \neq 0$, no matter how small, custodial symmetry is broken and one needs an additional counterterm for ρ : $\frac{1}{\tilde{\epsilon}}$ is floating around otherwise! One does not have a smooth transition from 4 to 3 input parameters.

To understand what is going on, examine the tree level potential of TM:

$$V(\Phi, H) = \mu_1^2 H^{\dagger} H + \frac{1}{2} \mu_2^2 \Phi^{\dagger} \Phi + \lambda_1 (H^{\dagger} H)^2 + \frac{1}{4} \lambda_2 (\Phi^{\dagger} \Phi)^2 + \frac{1}{2} \lambda_3 (H^{\dagger} H) (\Phi^{\dagger} \Phi) + \lambda_4 v \Phi_U^i H^{\dagger} \sigma_i H.$$

J. R. Forshaw, D. A. Ross and B. E. White, JHEP 0110:007,2001. Here

$$\Phi_U = U^{\dagger} \Phi, \quad U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i & 0 \\ 0 & 0 & \sqrt{2} \\ -1 & -i & 0 \end{pmatrix}.$$

Define $t_{\beta} \equiv \frac{v'}{v}$. Minimization with respect to ϕ_R^0 and η^0 yields:

$$\begin{split} &8\mu_1^2 + 8\lambda_1 v^2 + \lambda_3 t_\beta^2 v^2 - 4\lambda_4 t_\beta v^2 = 0, \\ &4\mu_2^2 t_\beta + \lambda_2 t_\beta^3 v^2 + 2\lambda_3 t_\beta v^2 - 4\lambda_4 v^2 = 0. \end{split}$$

We have assumed that there is no mixing between neutral Higgs components $\Rightarrow \frac{\partial^2 V(\Phi, H)}{\partial \eta^0 \partial \phi_R^0}\Big|_{<>} = 0$. That implies $2\lambda_4 = \lambda_3 t_\beta$.

And then minimization equations become

$$8\mu_1^2 + 8\lambda_1 v^2 - \lambda_3 t_\beta^2 v^2 = 0, t_\beta \left(4\mu_2^2 + \lambda_2 t_\beta^2 v^2\right) = 0.$$

1. Let mixing between η^{\pm} and ϕ^{\pm} vanish. That can be achieved by setting $v' \to 0$. But then custodial symmetry is restored and the 1-loop renormalization should be done as in the SM.

2. Let the mass of η^{\pm} go to ∞ . Then $\frac{\partial^2 V(\Phi, H)}{\partial \eta^{\pm 2}}\Big|_{<>} \to \infty$: $4\mu_2^2 + \lambda_2 t_\beta^2 v^2 + 2\lambda_3 v^2 \to \infty.$

v and t_{β} cannot get too large. In the TM $v^2 + {v'}^2 = v_{SM}^2 = (246 \text{ GeV})^2.$ λ_3 cannot get too large, otherwise $\mu_1^2 \to \infty$ and also theory becomes non-perturbative. Therefore $4\mu_2^2 + \lambda_2 t_{\beta}^2 v^2 \to \infty$ is the only solution. If $4\mu_2^2 + \lambda_2 t_\beta^2 v^2 \to \infty$, then minimization condition $t_\beta \left(4\mu_2^2 + \lambda_2 t_\beta^2 v^2\right) = 0$

implies that $t_{\beta} \to 0$. But this case corresponds to the restoration of custodial symmetry, $\rho = 1$ at tree level.

There is one more option to eliminate the mixing between neutral components of triplet and doublet:

 $\frac{\partial^2 V(\Phi,H)}{\partial \eta^{0^2}}\Big|_{<>} \to \infty, \text{ while keeping } \frac{\partial^2 V(\Phi,H)}{\partial \eta^0 \partial \phi_R^0}\Big|_{<>} \text{ fixed.}$ Then $4\mu_2^2 + 3\lambda_2 t_\beta^2 v^2 + 2\lambda_3 v^2 \to \infty \text{ and } 2\lambda_4 - \lambda_3 t_\beta \text{ is finite. The minimization condition implies:}$

$$t_{\beta}(4\mu_2^2 + \lambda_2 t_{\beta}^2 v^2) = 2v^2(2\lambda_4 - \lambda_3 t_{\beta}).$$

If one restores the custodial symmetry, $t_{\beta} \to 0$, then $\mu_2 \to \infty$ can be accomodated. However, if $t_{\beta} \neq 0$, then λ_3 has to $\to \infty$, and therefore $\mu_1^2 \to \infty$ and theory becomes non-perturbative.

It is impossible to decouple the triplet without either restoring the custodial symmetry, or else blowing up the perturbative framework. Including all electroweak observables in the analysis provides a better constraint on m_t . Example:

T. Blank and W. Hollik, Nucl.Phys.B514:113-134,1998,

M.-C. Chen, S. Dawson and T. K., in preparation.

Global fit is coming soon.

A (very incomplete) list of models with $\rho \neq 1$ at tree level (with even less complete list of references):

Littlest Higgs

N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 0207:034,2002,

M.-C. Chen and S. Dawson, Phys.Rev.D70:015003,2004.

$SU(2)_L \times SU(2)_R$ model

J. C. Pati and A. Salam, Phys.Rev.D10:275-289,1974,

M. Czakon, M. Zralek and J. Gluza, Nucl.Phys.B573:57-74,2000.

Warped extra dimensions without $SU(2)_c$

- L. Randall and R. Sundrum, Phys.Rev.Lett.83:3370-3373,1999, M. Carena,
- A. Delgado, E. Ponton, T. M. P. Tait and C. E. M. Wagner, Phys.Rev.D71:015010,2005.

Conclusions

• Models with $\rho \neq 1$ at tree level require careful treatment. SM renormalization is not applicable.

• Top quark mass constraint from electroweak precision measurements may be loosened.

• One can have massive Higgs bosons in the theory.

• Constraints on some models need to be reexamined.