New Results for Higgs Boson Masses and Mixings in the r/cMSSM Higgs Sector

Sven Heinemeyer, CERN

in collaboration with W. Hollik, H. Rzehak and G. Weiglein

Snowmass, 08/2005

- 1. Motivation
- 2. Corrections of $\mathcal{O}(\alpha_b \alpha_s)$ in the rMSSM
- **3**. Corrections of $\mathcal{O}(\alpha_t \alpha_s)$ in the cMSSM
- 4. Conclusions

1. Motivation

SM Higgs @ ILC: Precise measurement of:

- 1. Higgs boson mass, $\delta M_{H} \approx {\rm 50~MeV}$
- Higgs boson width (direct/indirect)
- 3. Higgs boson couplings, $\mathcal{O}(\text{few}\%) \Rightarrow$
- Higgs boson quantum numbers: spin, ...

MSSM: similar precision expected (possible problems from loop corrections) Q: Can this precision be utilized in the MSSM Higgs sector?

1. Motivation

SM Higgs @ ILC: Precise measurement of:

- 1. Higgs boson mass, $\delta M_{H} \approx {\rm 50~MeV}$
- Higgs boson width (direct/indirect)
- 3. Higgs boson couplings, $\mathcal{O}(\text{few}\%) \Rightarrow$
- Higgs boson quantum numbers: spin, ...

MSSM: similar precision expected (possible problems from loop corrections)Q: Can this precision be utilized in the MSSM Higgs sector?A: Yes! ... if the theory predictions are as precise

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } \frac{1}{2} \\ \begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } 0 \\ g & \underbrace{W^{\pm}, H^{\pm}}_{1,2} & \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{1,2,3,4} & \text{Spin } 1 \text{ / Spin } 0 \\ \begin{bmatrix} \tilde{g} & \tilde{\chi}_{1,2}^{\pm} & \tilde{\chi}_{1,2,3,4}^{0} & \text{Spin } \frac{1}{2} \end{bmatrix}$$

Enlarged Higgs sector: Two Higgs doublets

Problem in the MSSM: many scales

 \tilde{t}/\tilde{b} sector of the MSSM: (scalar partner of the top/bottom quark)

Stop, sbottom mass matrices $(X_t = A_t - \mu^* / \tan \beta, X_b = A_b - \mu^* \tan \beta)$:

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + DT_{t_1} & m_t X_t^* \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + DT_{t_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_1}^2 & 0 \\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix}$$

$$\mathcal{M}_{\tilde{b}}^2 = \begin{pmatrix} M_{\tilde{b}_L}^2 + m_b^2 + DT_{b_1} & m_b X_b^* \\ m_b X_b & M_{\tilde{b}_R}^2 + m_b^2 + DT_{b_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{b}}} \begin{pmatrix} m_{\tilde{b}_1}^2 & 0 \\ 0 & m_{\tilde{b}_2}^2 \end{pmatrix}$$

mixing important in stop sector (also in sbottom sector for large tan β) soft SUSY-breaking parameters A_t, A_b also appear in $\phi - \tilde{t}/\tilde{b}$ couplings

$$SU(2)$$
 relation $\Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L}$

 $\Rightarrow \text{ relation between } m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}, \theta_{\tilde{b}}$

Enlarged Higgs sector: Two Higgs doublets

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{+} \\ \psi_{2}^{-} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{{g'}^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters:

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

Contrary to the SM:

m_h is not a free parameter

MSSM tree-level bound: $m_h < M_Z \mathrm{,}$ excluded by LEP Higgs searches

Large radiative corrections:

Dominant one-loop corrections:

$$\Delta m_h^2 \sim G_\mu m_t^4 \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Measurement of m_h , Higgs couplings \Rightarrow test of the theory

ILC: $\Delta m_h \approx 0.05 \text{ GeV}$

 \Rightarrow aim for theoretical precision!

 $(\Rightarrow m_h \text{ will be (the best?) electroweak precision observable)}$

Example of application: m_h prediction as a function of A_t

[S.H., S. Kraml, W. Porod, G. Weiglein '02]

 $\Rightarrow m_h$ is crucial input for SUSY fit programs (Fittino, Sfitter)

2. Correction of $\mathcal{O}\left(\alpha_b\alpha_s\right)$ in the rMSSM

Evaluation of Higgs boson masses in the MSSM with real parameters:

Two-point vertex function:

$$\Gamma(q^2) = \begin{pmatrix} q^2 - m_{H,\text{tree}}^2 + \hat{\Sigma}_{HH}(q^2) & \hat{\Sigma}_{hH}(q^2) \\ \hat{\Sigma}_{hH}(q^2) & q^2 - m_{h,\text{tree}}^2 + \hat{\Sigma}_{hh}(q^2) \end{pmatrix}$$

determination of $det(\Gamma(q^2)) = 0 \Rightarrow M_h, M_H, \alpha_{eff}, \ldots$

Main task: calculation of $\hat{\Sigma}(q^2)$, including renormalization

Here:

- evaluation of 2-loop corrections of $\mathcal{O}(\alpha_b \alpha_s)$
- comparison of 4 different renormalization schemes

The Higgs self-energy at 2-loop:

 $\rightarrow \alpha_s$ correction to the leading 1-loop term $\sim m_b^4$

Approximations:

– only $m_b^2 (\sim y_b^2)$ terms

- gauge couplings are set to 0
- external momentum is set to 0

$$\Rightarrow \hat{\Sigma}_{22}^{(2)}(q^2) \approx \Sigma_{22}^{(2)}(0) + \cos^2\beta \,\delta M_A^{2(2)} \\ - \frac{e}{2\,M_W s_W} \left(\sin^2\beta \,\cos\beta \,\delta t_1^{(2)} - \sin\beta \,(1 + \cos^2\beta) \,\delta t_2^{(2)}\right)$$

in the $\phi_1\phi_2$ basis with

 $\Sigma_{22}^{(2)}(0)$: unrenormalized 2-2 self-energy $\delta M_A^{2(2)} = \Sigma_A^{(2)}(0)$: A mass counter term $\delta t_i^{(2)} = -T_i^{(2)}$: ϕ_i tad-pole

Contributions to the 2-loop self-energy:

2-loop self-energy diagrams:

2-loop tad-pole diagrams:

Contributions to the 2-loop self-energy:

diagrams with counter term insertion:

\rightarrow different renormalization schemes enter

Renormalization:

Calculation of two-loop corrections of $\mathcal{O}(\alpha_t \alpha_s)$ and $\mathcal{O}(\alpha_b \alpha_s)$

 \Rightarrow parameters of the t/\tilde{t} and b/\tilde{b} are defined at the 1-loop level

 \Rightarrow different choices of renormalization possible

 $\begin{array}{l} t/\tilde{t} \mbox{ sector: } & \mbox{ one renormalization scheme: } \\ 4 \mbox{ independent parameters: } \\ m_{\tilde{t}_1}, \ m_{\tilde{t}_2}, \ \theta_{\tilde{t}}, \ m_t \mbox{ on-shell } \\ & \rightarrow A_t \mbox{ given in terms of the others } \end{array}$

 b/\tilde{b} sector: four schemes analyzed

Investigation of scheme dependence:

 \Rightarrow information about size of missing higher order corrections

 \Rightarrow estimate of theory uncertainty

Renormalization schemes in the b/\tilde{b} sector:

SU(2) relation $\Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L}$

 \Rightarrow out of $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$, $\theta_{\tilde{b}}$, A_b , m_b only 3 are independent \Rightarrow two parameters (incl. CTs) are given in terms of the others

In all four schemes: $m_{\tilde{b}_1}$ dep. (SU(2) relation), $m_{\tilde{b}_2}$ OS

scheme	b-mass m_b	A_b	mixing angle $ heta_{ ilde{b}}$
$m_b \overline{DR}$	DR	DR	dep.
A_b , $ heta_{\widetilde{b}}$ OS	dep.	OS	OS
A_b , $ heta_{ ilde{b}}$ \overline{DR}	DR	dep.	DR
$m_b \ OS$	OS	dep.	OS

⇒ scheme m_b OS: analogous to the t/\tilde{t} sector → obvious choice ?

Resummed bottom quark mass:

 \rightarrow absorb the leading corrections in a resummed form in the bottom quark mass at the 1-loop level

$$m_b^{\overline{\rm DR}} = \frac{\tilde{m}_b^{\rm pole} + \Sigma_b^{\tan\beta \rm non-enh.}}{1 + \Delta m_b}$$

with

$$\Delta m_b = \frac{2 \alpha_s}{3 \pi} \tan \beta \mu m_{\tilde{g}} I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2)$$

$$\Sigma_b^{\tan\beta non-enh.}_{|fin} = \tan \beta \text{ non-enhanced terms in } \Sigma_{b,s}$$

$$\tilde{m}_b^{\text{pole}} = m_b^{\overline{\text{MS}}}(M_Z) \times \left[1 + \frac{\alpha_s}{\pi} \left(\frac{4}{3} - \log \frac{(m_b^{\overline{\text{MS}}})^2}{M_Z^2} \right) \right]$$

"formal" pole mass obtained from the \overline{MS} mass

- \Rightarrow large higher-order corrections included at the 1-loop level
- \rightarrow other renormalization schemes by finite shift

 M_h as a function of tan β , $\mu < 0$:

 M_H as a function of tan β , $\mu < 0$:

Observations:

• Scheme m_b OS gives very large corrections

Reason: A_b is a dependent quantity \Rightarrow large corrections via δA_b

$$\delta A_b = \frac{1}{m_b} \left[-\frac{\delta m_b}{2 m_b} (m_{\tilde{b}_1}^2 - m_{\tilde{b}_2}^2) \sin 2\theta_{\tilde{b}} + \dots \right]$$
$$= \frac{1}{m_b} \left[-\delta m_b (A_b - \mu \tan \beta) + \dots \right]$$

$$\hat{\Sigma}_{HH} \sim (\cos \alpha A_b)^2, \quad \hat{\Sigma}_{hh} \sim (\sin \alpha A_b)^2$$

 \Rightarrow effect more pronounced for M_H

 \Rightarrow Scheme m_b OS is discarded as a useful renormalization scheme

• Other schemes: differences of $\mathcal{O}(1 \text{ GeV})$ for large $\tan \beta$ \Rightarrow non-negligible M_h as a function of tan β , $\mu > 0$:

 \Rightarrow small corrections, scheme $m_b \overline{\text{DR}}$: "no" correction

 M_h as a function of μ , $\mu < 0$:

 M_h as a function of M_A , $\mu < 0$:

Dependence on renormalization scale $\mu^{\overline{\text{DR}}}$:

$$\begin{split} M_A &= 700 \text{ GeV} \\ \mu &= -1000 \text{ GeV} \\ \tan\beta &= 50 \\ m_t/2 \leq \mu^{\overline{\text{DR}}} \leq 2\,m_t \end{split}$$

 \Rightarrow scale dependence $\mathcal{O}(\pm 2 \text{ GeV})$ for large $m_{\tilde{q}}$

Comparison with existing calculation: [A. Brignole et al. '02]

3. Corrections of $\mathcal{O}(\alpha_t \alpha_s)$ in the cMSSM

Higgs potential of the cMSSM contains two Higgs doublets:

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.}) + \frac{g'^2 + g^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g^2}{2} |H_1 \bar{H}_2|^2$$
gauge couplings, in contrast to SM

Five physical states: h^0, H^0, A^0, H^{\pm} (no CPV at tree-level) 2 CP-violating phases: ξ , $\arg(m_{12}) \Rightarrow$ can compensate each other Input parameters: $\tan \beta = \frac{v_2}{v_1}, M_A$ or $M_{H^{\pm}}$

Effects of complex parameters in the Higgs sector:

Complex parameters enter via loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\tilde{g}}$: gluino mass
- \Rightarrow can induce $\mathcal{CP}\text{-violating}$ effects

Result:

$$(A, H, h) \rightarrow (h_3, h_2, h_1)$$

with

 $m_{h_3} > m_{h_2} > m_{h_1}$

Inclusion of higher-order corrections:

 $(\rightarrow$ Feynman-diagrammatic approach)

Propagator / mass matrix with higher-order corrections:

 $\begin{pmatrix} q^2 - M_A^2 + \widehat{\Sigma}_{AA}(q^2) & \widehat{\Sigma}_{AH}(q^2) & \widehat{\Sigma}_{Ah}(q^2) \\ \\ \widehat{\Sigma}_{HA}(q^2) & q^2 - m_H^2 + \widehat{\Sigma}_{HH}(q^2) & \widehat{\Sigma}_{Hh}(q^2) \\ \\ \\ \widehat{\Sigma}_{hA}(q^2) & \widehat{\Sigma}_{hH}(q^2) & q^2 - m_h^2 + \widehat{\Sigma}_{hh}(q^2) \end{pmatrix}$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H, A) : renormalized Higgs self-energies $\hat{\Sigma}_{Ah}, \hat{\Sigma}_{AH} \neq 0 \Rightarrow CPV, CP$ -even and CP-odd fields can mix

Our result for $\hat{\Sigma}_{ij}$:

- full 1-loop evaluation: dependence on all possible phases included
- New: $\mathcal{O}(\alpha_t \alpha_s)$ corrections in the FD approach rMSSM: difference between FD and RGiEP approach \mathcal{O} (few GeV)

Differences to the real case:

- use $M_{H^{\pm}}$ as on-shell mass, since M_A receives loop corrections $\Rightarrow \tilde{b}$ sector enters via $\Sigma_{H^{\pm}}$ \Rightarrow renormalization of the \tilde{b} sector
- A_t complex \Rightarrow renormalization of $|A_t|$ and ϕ_{A_t} (no renormalization of μ , no $\mathcal{O}(\alpha_s)$ corrections)
- M_3 complex, but $m_{\tilde{g}}$ is real (and positive) \Rightarrow phase of M_3 enters gluino vertices
- $T_A \neq 0 \Rightarrow$ renormalized to zero $\Rightarrow \delta t_A$ enters renormalized self-energies $\hat{\Sigma}_{hA}$, $\hat{\Sigma}_{HA}$
- \rightarrow so far all results preliminary!

 m_{h_1} as a function of ϕ_{A_t} :

$$\begin{split} M_{\text{SUSY}} &= 1000 \text{ GeV} \\ |A_t| &= 2000 \text{ GeV} \\ \tan \beta &= 10 \\ M_{H^{\pm}} &= 150 \text{ GeV} \\ \hline \text{OS renormalization} \\ &\Rightarrow \text{modified dependence} \\ & \text{on } \phi_{A_t} \text{ at the 2-loop level} \end{split}$$

 $M_{SUSY} = 500 \text{ GeV}$ $A_t = 1000 \text{ GeV}$ $\tan \beta = 10$ $M_{H^{\pm}} = 500 \text{ GeV}$ OS renormalization $\Rightarrow \text{ threshold at } m_{\tilde{g}} = m_{\tilde{t}} + m_t$

- ⇒ large effects around threshold
- ⇒ phase dependence has to be taken into account

4. Conclusinos

- The ILC will provide high precision results for a light r/cMSSM Higgs
- MSSM Higgs masses and couplings is connected via radiative corrections to all other sectors
- Evaluation of $\mathcal{O}(\alpha_b \alpha_s)$ corrections in the rMSSM:
 - new result for $\tan \beta \neq \infty$
 - investigation of different renormalization schemes \Rightarrow error estimate from scheme and scale dependence
 - $-\mu > 0$: corrections $\mathcal{O}(100 \text{ MeV}) \Rightarrow \text{under control}$
 - $\mu < 0$: corrections O(2 3 GeV)error estimate $O(2 \text{ GeV}) \Rightarrow$ not under control
- Evaluation of $\mathcal{O}(\alpha_s \alpha_t)$ corrections in the cMSSM:
 - new renormalization for complex parameters
 - \tilde{b} sector enters
 - $-\phi_{A_t}$ dependence modified
 - $-\phi_{M_3}$ dependence $\mathcal{O}(1 \text{ GeV})$
- Results will be implemented into *FeynHiggs* (www.feynhiggs.de)

Evaluation of 2-loop diagrams:

- 1. Generation of diagrams and amplitudes with FeynArts [Küblbeck, Böhm, Denner '90] [Hahn '00 '03]
- 2. Algebraic evaluation and tensor integral reduction to scalar integrals: TwoCalc

(works for two-loop self-energies)

[G. Weiglein '92] [G. Weiglein, R. Scharf, M. Böhm '94]

- 3. Further evaluation: insertion of integrals, expansion in $\delta = \frac{1}{2}(4 D)$ \rightarrow algebraical check: cancellation of divergencies
- 4. Result:
 - algebraic Mathematica code
 - Fortran code (planned: implementation into FeynHiggs)

Some more details:

- scheme m_b OS: analogous to the t/\tilde{t} sector \rightarrow obvious choice ?

analogous to [A. Brignole, G. Degrassi, P. Slavich and F. Zwirner '02]

$$- \theta_{\tilde{t}} \text{ OS: } \delta \theta_{\tilde{b}} = \frac{\operatorname{Re} \Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_1}^2) + \operatorname{Re} \Sigma_{\tilde{b}_{12}}(m_{\tilde{b}_2}^2)}{m_{\tilde{b}_1}^2 + m_{\tilde{b}_2}^2}$$

The Higgs self-energy at 2-loop:

 $ightarrow lpha_s$ correction to the leading 1-loop term $\sim m_t^4$

Approximations:

- only m_t^2 terms

- gauge couplings are set to 0
- external momentum is set to 0

$$\Rightarrow \widehat{\Sigma}_{hh}^{(2)}(0) = \sum_{hh}^{(2)}(0) + (\cos\alpha\cos\beta + \sin\alpha\sin\beta)^2 \delta M_{H^{\pm}}^{2(2)}$$
$$- \frac{e}{2M_W s_W} \left(f_1(\alpha,\beta) \delta t_1^{(2)} + f_2(\alpha,\beta) \delta t_2^{(2)} \right)$$

in the hH basis with

$$\Sigma_{hh}^{(2)}(0)$$
 : unrenormalized hh self-energy
 $\delta M_{H^{\pm}}^{2(2)} = \Sigma_{H^{\pm}}^{(2)}(0)$: H^{\pm} mass counter term
 $\delta t_i^{(2)} = -T_i^{(2)}$: ϕ_i tad-pole
 $\widehat{\Sigma}_{hA}, \ \widehat{\Sigma}_{HA}$: $\delta t_A = -T_A$ enters