Particle Flow Algorithms

José Repond Argonne National Laboratory

Snowmass Workshop, August 14 – 27, 2005

Historical milestones for particle physics

Based on K.Pretzl's CALOR'02 review talk

1930 First calorimetric measurement

Mean energy of continuous β spectrum from ²¹⁰Bi L. Meitner and W. Orthmann Zeitschrift für Physik 60 (1930) 143

Telescope counters

Hodoscopes

Ionization chambers

Absorber (Iron)

Fig. 1. Längsschnitt durch ein Kalorimetergefäß. Wood sches Metall.

1954

First sandwich calorimeter

Measure cosmic rays with $E > 10^{14} \text{ eV}$ N.L. Grigorov et al. Zh.Exsp.Teor.Fiz. 34(1954) 506 Calorimetry

1968

First total absorption calorimeter

Using large Nal(TI) or CsI Crystals for π^0 spectroscopy E.B.Hughes et al., IEEE:NS 17 (1970) 14

Fig. 4. A photograph of a $NaI(T\ell)$ spectrometer consisting of three $10" \times 30"$ diameter assemblies.

First hadron calorimeter

GARGAMELLE (bubble chamber) at CERN with 5 λ_{I} Discovery of neutral currents

1980's First 4π calorimeters at colliders

SPEAR, PETRA, PEP, SppS...

Calorimetry

1982

First compensating calorimeter with e/h ~ 1

Axial field spectrometer at the ISR H.Gordon et al., NIM 196 (1982) 303

First application of **1990** Energy Flow Algorithms

ALEPH detector searching for Higgs

Now: Particle Flow Algorithms

The Linear Collider

Measuring WW and Z⁰Z⁰

Many final states involve WW or ZZ pairs

 $e^+e^- \rightarrow WWvv$ or $e^+e^- \rightarrow ZZvv$

Hadronic decay of W or Z

Branching ratio ~ 70% Results in two hadronic jets

Requires excellent

Jet Energy Resolution

to resolve

 $\Delta m_{Z-W} = 9.76 \text{ GeV}$

Traditional Jet Measurement

Uses calorimeter alone

 \rightarrow Example of CDF live event

Sandwich design

Used by most calorimeters at colliders

 \rightarrow Alternating layers of

Absorber plates to incite shower and Active medium (detector) counting charged particles traversing it

Traditional jet measurement

Calorimeter measures photons and hadrons in jet

Typically with different response: $e/h \neq 1$ Leads to poor jet energy resolution of > 100%/ $\sqrt{E_{jet}}$

ZEUS tuned

Scintillator and Uranium thickness to achieve e/h ~ 1

 \rightarrow Best single hadron energy resolution ever

35%/ \sqrt{E} **50%**/ \sqrt{E} Jet Energy Resolution

At the Linear Collider

Goal of

$$\sigma/E_{jet} = 30\%/\sqrt{E_{jet}}$$

New approach

Need new approach

Particle Flow Algorithms

The idea...

 Charged particles
 measured with the
 Tracker

 Neutral particles
 Calorimeter

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	≻ 18%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	
Confusion	Required	for 30%/√E	≤ 0.24 ² E _{jet}	

Requirements on detector

- \rightarrow Need excellent tracker and high B field
- \rightarrow Large R_I of calorimeter
- → Calorimeter inside coil
- \rightarrow Calorimeter with extremely fine segmentation

Figure of merit BR_l²

K

 π^+

ECAI

HCAL

Do they work?

Design a detector optimized for the application of PFAs

Huge simulation effort underway

 \rightarrow England, France, Germany, Argonne, Iowa, Kansas, NIU, SLAC...

Ingredients of PFAs

- I Clustering of calorimeter hits
- II Matching of clusters with charged tracks
- III Photon finder
- IV Neutral hadron energy measurement
- V Special tasks

Most important subtask of PFAs...

Clustering of calorimeter hits

Tubes (Kuhlmann, Magill)

Adding hits in cones originating at high density points Tuned cone size

Directed tree (NIU)

Cone algorithm (Yu)

Using maximum density cells as centroids Add hits (energy) in cones

Layer – by – layer (Ainsley)

Minimizing distance between hits in adjacent layers Tracking algorithm

Calculate density differences for pairs of cells Use maximum density difference to either start new cluster or merge cells

Density weighted (Xia)

Defined geometry independent density function Seeds are cells with highest density Cluster hits with densities above a given cut

....more

Clustering of calorimeter hits

Criteria for performance

Efficiency (find all hits belonging to a given particle) Purity (reject hits not associated with a given particle)

Example from Ainsley

5 GeV (π^+n) event at a distance of 5 cm

Distribution of event energy [%]	True cluster ID	
Reconstructed cluster ID	7.4	40.1
	46.3	6.1

Quality = Fraction of event energy that maps in a 1:1 ratio between true and reconstructed clusters

Photon finders

Using Minimum Spanning Tree clustering (lowa)

- Evaluation of Number of hits in cluster Distance to closest MIP track Eigenvalue of energy tensors
- Performance 99% γ efficiency with 5% π^+ contamination Good energy reconstruction

Using HMatrix (Graf, Wilson)

Using Cones (Kuhlmann, Magill)

Cuts on

Distance to charged tracks Location of shower maximum

Example using Neural Nets (Bower, Cassell)

Calculates energy tensor of clusters Neural net separates into

EM clusters Neutral hadronic Charged hadronic EM fragment Hadronic fragment

Putting it all together

First Results

Applied to $e^+e^- \rightarrow Z^0 \rightarrow q \ \overline{q}$ events

Two Gaussian fit

Jet Energy Resolution still factor 2 from goal

Future improvements to

- Tube algorithm
- Photon finding
- Neutral hadron energy measurement

Lots of effort needed!!!

(before being useful for detector design)

Calorimeter Developments

Requirements for the LCD

• Highly segmented readout

Layer – by – layer longitudinally $O(1 \text{ cm}^2)$ laterally

Compact design

Short radiation length X_0 for ECAL Short interaction length λ_1 for HCAL Minimal Molière radius R_M

Molière Radius

Definition $R_M = X_0 E_S / E_C$

with X₀ ... Radiation length

Electron looses all but 1/e of its energy by Bremsstrahlung Scale for longitudinal development of EM showers

 E_{s} ... Scaled energy = 21 MeV E_{c} ... Critical energy

Energy where shower development dies

Meaning 90% of energy contained in cylinder with $R = R_M$

Concept of the SiD Calorimeter

1) Located inside the coil

2) Finest readout segmentation possible

In ECAL of order 0.2 cm² In HCAL of order 1.0 x 1.0 cm² } laterally Layer – by – layer longitudinally

3) Thinnest possible active detectors

Minimize $R_{Moliere,}$ and cost In ECAL of order 1 – 2 mm In HCAL of order 5 – 10 mm

4) Absorber

Tungsten in ECAL ($R_{Moliere} \sim 9 \text{ mm}$) Steel (default) or Tungsten in HCAL

Technical Realization: HCAL

Choices for HCAL active media

	Scintillator	GEMs	RPCs	
Technology	Proven (SiPM?)	Relatively new	Relatively old	
Electronic readout	Analog (multi-bit) or Semi-digital (few-bit)	Digital (single-bit)	Digital (single-bit)	
Thickness (total)	~ 8mm	~8 mm	~ 8 mm	
Segmentation	3 x 3 cm ²	1 x 1 cm ²	1 x 1 cm ²	
Pad multiplicity for MIPs	Small cross talk	Measured at 1.27	Measured at 1.6	
Sensitivity to neutrons (low energy)	Yes	Negligible	Negligible	?
Recharging time	Fast	Fast?	Slow (20 ms/cm ²)	
Reliability	Proven	Sensitive	Proven (glass)	
Calibration	Challenge	Depends on efficiency	Not a concern (high efficiency)	
Assembly	Labor intensive	Relatively straight forward	Simple	
Cost	Not cheap (SiPM?)	Expensive foils	Cheap	

Fine Tuning of the Calorimeter Design

Many design parameters to adjust

Overall	Inner radius of calorimeter Outer radius of calorimeter Transition from barrel to endcaps Transition from endcaps to very forward calorimeters
ECAL	Absorber thickness (uniform, varying with depth) Number of layers Segmentation of readout
HCAL	Absorber choice \rightarrow Tungsten (2 X ₀) versus steel (1 X ₀) Number of layers Active medium (RPC, GEM, Scintillator) Segmentation of readout Resolution of readout (number of bits)
Tail catcher	Needed? Same technology as HCAL

Need reasonably well performing PFA to evaluate different designs

Reasonably well performing PFA

Jet energy resolution of 40%/ \sqrt{E} or better

Test with $e^+e^- \rightarrow W^+W^-$ at $\sqrt{s} = 500 \text{ GeV}$ Reconstruct W mass with $\Gamma \leq 4 \text{ GeV}$

Allowed tricks (at the moment)

Use of MC truth for track parameters Cut on event axis to be within 55 degrees of normal Eliminate events with significant energy in neutrinos Use of code by other developers

Reward for 1st person/group to achieve goal

Several bottles of champagne (John, José, Harry)

Problem I: Can we trust GEANT4?

Tuning of detector relies on

PFAs and a Realistic simulation of hadronic showers

Comparison of various models nalised HCAL (with ECAL in front) SCI π⁻ 10 GeV rpc Differences up to 60% shower radiu HCALStructury <u>M∕ME</u> ECAI Front End Electroni model Plot by G Mavromanolakis Measurements with fine granularity prototype calorimeters absolutely mandatory am Monitoring Acveable Table Sotive Silicon B

Problem II: Sensitivity to slow neutrons?

	Scintillator	RPC Gas
Molecule	C ₆ H ₅ CH=CH ₂	$C_2H_2F_4$
Density	1.032 g /cm ³	4.3 x 10 ⁻³ g/cm ³
Thickness	5 mm	1.2 mm
Sensitivity to slow neutrons	small	negligible
Hadronic shower radius	larger	smaller
Single particle resolution	better	worse

 K_L^0

Neutron

Momentum [GeV/c]	5	10	20	Momentum [GeV/c]	5	10	20
$\sigma = x\sqrt{E}$ Scintillator		(54.2)	(55.5)	$\sigma = x\sqrt{E}$ Scintillator		(54.2)	(55.5)
$\sigma = x\sqrt{E}$ RPC	0.57	0.66	0.64	$\sigma = x\sqrt{E}$ RPC	0.78	0.80	0.74
Different shower models in G4?							

Tradeoff

More studies needed...

Summary

PFAs are needed to improve jet resolution beyond \sim 50%/ \sqrt{E}

PFAs have been applied to existing detectors and work

LC detectors being designed with application of PFA in mind

Calorimeters with extremely fine segmentation shortest possible Moliere Radius Technical solutions being developed

Detailed measurements of hadronic showers absolutely needed

Prototype ECALs with $0.2 \text{ cm}^2 - 1.0 \text{ cm}^2$ pixels HCALs with $1.0 \text{ cm}^2 - 3.0 \text{ cm}^2$ readout pads

