

Nuclear Physics an Introduction

Philippe CHOMAZ GANIL-CAEN

Matter is made of atoms...

Atomic Force Microscope

Matter is made of atoms...

Atomic Force Microscope

Exploring Matter

..., nuclei and particles.

Particle accelerators

École du CERN, 2005.

Yu/

Fundamental **Questions: Relevant degree** of freedom Effective interaction Complex structure **Connection with** elementary level

The Terra incognita of exotic nuclei ⁸²

50

250 stable nuclei
 N=Z light N>Z heavy
 2000 « artificial » nuclei
 synthesized since Joliot-Curie
 5000 to 7000 bound nuclei expected

126

tema incognita

neutron number N

École du CERN, 2005.

N

proton number

First "picture" of radioactivity Repair nois Curry & Curry & d. Marian Experience Curry & Curry & d. Marian Experience and the & 27 of arts Curry & do. -Windegn' la Samon.

1896: Becquerel 1898: Curie

1896: Becquerel
1898: Curie
3 types: α, β, γ

1896: Becquerel
1898: Curie
3 types: α, β, γ
Transmutation 1901:

Rutherford et Soddy

- I -Radioactivity Mystery

 Finite life time but always young
 Transmutation

- -Radioactivity **Mystery Exponential decay** $dN/dt = -N/T_{life}$ Finite life time but always young **Transmutation**

1902: First measure of decay laws

- I -Radioactivity Mystery solved

Exponential decay dN/dt = -N/T_{life} Finite life time but always young Transmutation

Gamov

-Radioactivity **Quantum property Exponential decay** $dN/dt = -N/T_{life}$ **Finite life time** but always young **Transmutation**

- -Radioactivity **Quantum property Exponential decay** $dN/dt = -N/T_{life}$ Finite life time but always young **Transmutation**

- I -Radioactivity

Quantum property

 Exponential decay dN/dt = -N/T_{life}
 Finite life time but always young
 Transmutation

 Exponential decay dN/dt = -N/T_{life}
 Finite life time but always young
 Transmutation

- I -Radioactivity **Still a mystery Radioactivity of nuclei Fission** ² 2p or ²He

- I -Radioactivity Still a mystery

Radioactivity of nucleiFission

QuickTime[™] et un décompresseur GIF sont requis pour visualiser cette image.

I
Radioactivity of nuclei

Fission

- I -Radioactivity Still a mystery

- I -

Radioactivity Still a mystery

2p radioactivity

 Sequential decay
 Tunneling of complex system ²He?
 Correlations in ⁴⁵Fe?

Blank et al, 2003

Rutherford

Target Source **1911** Atoms are almost empty **Except a hard Particules** scattering center: χ The atomic nucleus

Rutherford

Atomic Models

Atoms are almost empty

Except a hard scattering center: The atomic nucleus Nucleus few_fm electron

Pur

Rutherford

Atomic Models

Atoms are almost empty

Except a hard scattering center: The atomic nucleus Nucleus electron

- II -Exploring atom Quantum object

Atomic Models

Atoms are almost empty

Except a hard scattering center: The atomic nucleus

- II -Exploring atom Quantum object

Nucleus

Electron cloud

Atomic Models

Atoms are almost empty

Except a hard scattering center: The atomic nucleus

- II -Exploring atom Quantum object

Electrons on energy levels orbiting around a tiny heavy center: the nucleus

Electrons on energy levels orbiting around a tiny heavy center: the nucleus

Decomposition of the light

- II -Exploring atom Quantum object

- II -Exploring atom Quantum object

Periodic properties

- II -Exploring atom Quantum object

Periodicproperties

 Periodic properties
Magic numbers

Definition of symmetry

• A hamiltonian H has symmetry G (is invariant under G) if

 $\forall g \in G: [H,g] = 0$

• The transformations g are assumed to form a Lie algebra.

Consequences of symmetry

Degeneracy:

$$H|\Gamma\rangle = E|\Gamma\rangle \implies Hg|\Gamma\rangle = Eg|\Gamma\rangle$$

- State labelling:
 - $H|\Gamma\gamma\rangle = E(\Gamma)|\Gamma\gamma\rangle$
- Action of transformations g:

$$g|\Gamma\gamma\rangle = \sum_{\gamma'} a_{\gamma\gamma'}^{\Gamma}(g)|\Gamma\gamma'\rangle$$

• The a-matrices constitute a representation of the elements g of G.

Definition of a Lie algebra

- A Lie group contains an infinite number of elements that depend on a set of continuous variables.
- The corresponding Lie algebra is obtained from (a finite number of) infinitesimal operators, called generators.
- An algebraic structure over the generators is defined through commutation relations in terms of structure constants:

$$\left[g_{i},g_{j}\right] \equiv g_{i} \circ g_{j} - g_{j} \circ g_{i} = \sum_{k} c_{ij}^{k} g_{k}$$

- Structure constants are antisymmetric in i and j.
- Generators satisfy the Jacobi identity: $\begin{bmatrix} g_i, \begin{bmatrix} g_j, g_k \end{bmatrix} + \begin{bmatrix} g_j, \begin{bmatrix} g_k, g_i \end{bmatrix} + \begin{bmatrix} g_k, \begin{bmatrix} g_i, g_j \end{bmatrix} = 0$

Definition of symmetry

• A hamiltonian H has symmetry G (is invariant under G) if

 $\forall g \in G: [H,g] = 0$

• The transformations g are assumed to form a Lie algebra.

Consequences of symmetry

Degeneracy:

$$H|\Gamma\rangle = E|\Gamma\rangle \implies Hg|\Gamma\rangle = Eg|\Gamma\rangle$$

- State labelling:
 - $H|\Gamma\gamma\rangle = E(\Gamma)|\Gamma\gamma\rangle$
- Action of transformations g:

$$g|\Gamma\gamma\rangle = \sum_{\gamma'} a_{\gamma\gamma'}^{\Gamma}(g)|\Gamma\gamma'\rangle$$

• The a-matrices constitute a representation of the elements g of G.

Definition of a Lie algebra

- A Lie group contains an infinite number of elements that depend on a set of continuous variables.
- The corresponding Lie algebra is obtained from (a finite number of) infinitesimal operators, called generators.
- An algebraic structure over the generators is defined through commutation relations in terms of structure constants:

$$\left[g_{i},g_{j}\right] \equiv g_{i} \circ g_{j} - g_{j} \circ g_{i} = \sum_{k} c_{ij}^{k} g_{k}$$

- Structure constants are antisymmetric in i and j.
- Generators satisfy the Jacobi identity: $\begin{bmatrix} g_i, \begin{bmatrix} g_j, g_k \end{bmatrix} + \begin{bmatrix} g_j, \begin{bmatrix} g_k, g_i \end{bmatrix} + \begin{bmatrix} g_k, \begin{bmatrix} g_i, g_j \end{bmatrix} = 0$

Spin 1/2 Internal symmetry

"Those doublets and their anomalous Zeeman effects, are manifestations of an intrinsic electron ambivalence (Zweideutigkeit)"
Pauli 1925
Zweideutigkeit => spin

- V -Magic Numbers Quantum order

-V-Magic Numbers

Striking regularities

- V -Magic Numbers

Striking regularities

Nuclear chart

Proton number

Neutron number

φı

Nuclear shell: Super-heavy

φ

Nuclear shell: Super-heavy

Nuclear shells: neutron rich

High E₂₊ and shell closure
Ex: N=20?
Magic number disappears far from stability

Nuclear shells: neutron rich

High E₂₊ and shell closure
Ex: N=20?
Magic number disappears far from stability

Nuclear shells: neutron rich

High E₂₊ and shell closure Fx: N=20?

Magic number disappears far from stability

Configuration mixing

- VI -Exotic Nuclei New Quantum structures

- VI -Exotic Nuclei

Exectic Nuclei Ex: Explored a Samuel

Halo nuclei

Confirmed by nuclear reaction Uncertainty principle, $\Delta x \Delta p \ge \hbar$: Δp small Δx big => a Halo

Direct measure of the wave function in p

Physique Nucléaire 2000

- III -Proton Neutron Novel Quantum Symmetry

- III -Proton Neutron

1919: Protons

1932: Discovery of neutrons

1919: Protons

1932: Neutrons

■ 1932: Twin particles (m_n ≈ m_p)
 ¬ Proton : nucleon with the isotopic spin +1/2
 ¬ Neutron : nucleon of isospin -1/2

Energies Masses (MeV)

☞ New quantum number
☞ Proton ↔ neutron

+1/2 -1/2 I = Isospin

Symmetric nuclei

- *^{ce}* **Mirror nuclei**
- Isospin multiplets,
- ☞ A tool for structure studies
 ☞ Proton ↔ neutron

-1 -1/2 0 +1/2 +1 I = Isospin

14c

140

 14_N

☞ Proton ↔ neutron

-1 -1/2 0 +1/2 +1 I = Isospin

Many particles

Many twins
Novel quantum number: The hypercharge : Y

3 Quarks in baryons

3 Quarks in baryons

Today 6 flavors and 3 colors (QCD)

p

e⁻

 $\overline{\mathbf{v}}$

β Radioactivity

- Isospin (weak)
- Electro-weak unification
- **Gauge Theory**

3 Quarks in baryons

Today 6 flavors and 3 colors (QCD)

n

e⁻

V

β Radioactivity

- Isospin (weak)
- *e* Electro-weak unification
- **Gauge Theory**

3 Quarks in baryons

Today 6 flavors and 3 colors (QCD)

V

V

Weak Interaction

 Isospin (weak)
 Electro-weak unification
 Gauge theory
 Etructure with 3 Quarks
 Today 6 flavors and 3 colors (QCD)

Quarks and gluons in Nuclei

Nuclei: Laboratories for elementary properties

 ^φβ radioactivity and weak interaction (neutrinos)

 ^φβ radioactivity and CKM matrix

 Nuclear structure should be under control
Quarks and gluons in Nuclei

Nuclei: Laboratories for elementary properties

 β radioactivity and weak interaction (neutrinos)
 β radioactivity and CKM matrix
 Nuclear structure should be under control

QCD for nuclei far to be possible (non-perturbative)
Decoupling of the various scales => nucleons
Effective interaction for nucleon (measured ?)
=> Coming from QCD constraints (chiral symmetry)

N-N forces not enough=>3-body

- IV -Liquid Drop Quantum Chaos

- IV -Liquid Drop

Bond like a drop

 Energy proportional to the number of particles

Mechanical properties

Still badly known for neutron matter.

Mechanical properties

Still badly known for neutron matter.

 Isospin dependence: Radii, densities Masses and energies
 Compressibility: Breathing mode, reactions and flow

React like a liquid

Neutron absorptionState in disorder

- IV -Liquid Drop Quantum Chaos

Ther modynamics
 Liquid-gas phase transition

React like a liquid

Neutron absorptionState in disorder

Fragmentation of nuclei

Heavy ion collisions

t = **B Fragmentation of nuclei**

Heavy ion collisions

t = 1 M \s Fragmentation of nuclei

Heavy ion collisions

t = 2 10 s Fragmentation of nuclei

Heavy ion collisions

t = 3 is \s Fragmentation of nuclei

Heavy ion collisions

- VII -Spontaneous deformation Quantum top

The nucleus is auto-organized

École du CERN, 2005.

Deformed until breaking : Fission

 Spontaneous symmetry breaking
 Superdeformed nuclei

École du CERN, 2005.

Symmetry Breaking

Eurogam

More complex

shapes

École du CERN, 2005.

Bosons (pairs, quartets) in Nuclei

p-n

Normal superfluidity
 Opposite spins

New superfluidity
 N=Z nuclei

- Parallel spins
- ☞ T=0 (n-p) pairs
- Additionnal binding
 N=Z Nuclei

Bosons (pairs, quartets) in Nuclei

Normal superfluidity
 Opposite spins

New superfluidity N=Z nuclei

- Parallel spins
- ☞ T=0 (n-p) pairs
- Additionnal binding
 N=Z Nuclei

Bosons (pairs, quartets) in Nuclei

Super-symmetry

• Example: The ¹⁹⁴Pt - ¹⁹⁵Pt doublet.

Par D

Nuclear Physics an Introduction

Philippe CHOMAZ GANIL-CAEN

Nucle	ons and	nuclei:
	steps to el	oward the ementary structure
Salt cristal	Atoms	entitient Flectrons Neutrons Protons Nucleus Quarks
cole du CEPN 2005		Yuy

Par D

Definition of symmetry

• A hamiltonian H has symmetry G (is invariant under G) if

 $\forall g \in G: \ [H,g] = 0$

• The transformations g are assumed to form a Lie algebra.

Consequences of symmetry

• Degeneracy:

 $H|\Gamma
angle = E|\Gamma
angle \implies Hg|\Gamma
angle = Eg|\Gamma
angle$

• State labelling:

 $H|\Gamma\gamma\rangle = E(\Gamma)|\Gamma\gamma\rangle$

• Action of transformations g:

$$g|\Gamma\gamma\rangle = \sum_{\gamma'} a_{\gamma\gamma'}^{\Gamma}(g)|\Gamma\gamma'\rangle$$

• The a-matrices constitute a representation of the elements g of G.

Definition of a group

- A set of elements G and a multiplication operation.
- Axioms:
 - Closure

$$g \in G \land g' \in G \Rightarrow g \circ g' \in G$$

Associativity

$$g \circ (g' \circ g'') = (g \circ g') \circ g''$$

· Existence of an identity element e

 $e \circ g = g \circ e = g$

• Existence of unique inverse for every element g

$$g \circ g^{-1} = g^{-1} \circ g = e$$

• Commutativity is not required.

Definition of a Lie algebra

• A Lie group contains an infinite number of elements that depend on a set of continuous variables.

• The corresponding Lie algebra is obtained from (a finite number of) infinitesimal operators, called generators.

• An algebraic structure over the generators is defined through commutation relations in terms of structure constants:

$$\left[g_{i},g_{j}\right] \equiv g_{i} \circ g_{j} - g_{j} \circ g_{i} = \sum_{k} c_{ij}^{k} g_{k}$$

• Structure constants are antisymmetric in i and j.

• Generators satisfy the Jacobi identity: $\begin{bmatrix} g_i, \begin{bmatrix} g_j, g_k \end{bmatrix} + \begin{bmatrix} g_j, \begin{bmatrix} g_k, g_i \end{bmatrix} + \begin{bmatrix} g_k, \begin{bmatrix} g_i, g_j \end{bmatrix} = 0$

Casimir operators

• An operator that commutes with all generators of G is called a Casimir operator and denoted as (n is the order of the operator in the generators)

 $C_n[G]$

• Thus:

 $H = \sum_{n} \kappa_{n} C_{n} [G] \implies H \text{ has symmetry } G$

- Example: Rotations in three dimensions, SO(3).
 - Second-order Casimir operator of SO(3):

 $C_2[SO(3)] = j_x^2 + j_y^2 + j_z^2 \equiv j^2$

• SO(3) symmetry:

 $H = j^2 \implies H has SO(3)$ symmetry

• Degeneracy and state labelling:

 $C_{2}[SO(3)]jm_{j}\rangle = j(j+1)|jm_{j}\rangle$

École du CERN, 2005.

· /

Multifragmentation Volume effect Dynamics of a phase transition

Phase Transition

Phase Transition

École du CERN, 2005.

Phase Transition

Radioactivity **Quantum property Exponential decay** $dN/dt = -N/T_{life}$ **Finite life time** but always young **Transmutation**

« In » Or « Out »

« In » And « Out »

Schrödinger Cat

Yun F

- I -Radioactivity

Quantum property

 Exponential decay dN/dt = -N/T_{life}
 Finite life time but always young
 Transmutation

Schrödinger cat

