Astroparticle Physics (3/3)

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

CERN Summer Student Lectures, August 2004

- 1) What is Astroparticle Physics ? Big Bang Nucleosynthesis Cosmic Microwave Background
- 2) Dark matter, dark energy

High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Astroparticle Physics (3/3)

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

CERN Summer Student Lectures, August 2004

- What is Astroparticle Physics ?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Brief history of Cosmic Ray detection

Structure in cosmic ray spectrum

GZK (Greisen Zatsepin Kuzmin) CUT-OFF

$$\mathbf{p} + \gamma_{CMB} \rightarrow \Delta^{+} \begin{pmatrix} \mathbf{p} + \pi^{0} \\ \mathbf{n} + \pi^{+} \end{pmatrix}$$

When process energetically allowed (>5×10¹⁹ eV), space becomes opaque to CR

Sources with $E > E_{GZK}$ must be at d<100 Mpc (local cluster)

(no known acceleration sites...)

Acceleration mechanisms

1949 : Fermi acceleration

Stochastic acceleration of particles

on magnetic inhomogeneities

Head-on collisions \Rightarrow Energy gain Tail-end collisions \Rightarrow Energy loss On average, head-on more probable \Rightarrow Energy gain over many collisions $\Delta E/E \alpha \beta^2 \qquad \beta = v/c \sim 10^{-4}$

" Second order "

First order Fermi acceleration

<u>1970's : First order Fermi acceleration</u> Acceleration in strong shock waves

Conservation of nb of particles : $\rho_1 v_1 = \rho_2 v_2$ Strong shock : $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1)$ Fully ionized plasma (\Leftrightarrow ideal gas) $\gamma = 5/3$ and $v_1/v_2 = 4$ \Rightarrow Rapid gain in energy as particles repeatedly cross shock front

$$\Delta E/E \propto \beta$$
 (~10⁻¹) and E⁻² spectrum

" First order "

Powerful shocks? Supernovae!

Crab supernova

remnant

Low mass star

High mass star

(too short) life and (extremely violent) death of massive stars

1 SN II / 50 years in our galaxy

HESS : first confirmation

HESS : gamma-ray color map (E > 100 GeV)

ASCA : X-ray contours (E ~ 1 keV)

Excellent overlap → confirmation of SN remnants as particle accelerators

Energy limitation

Natural limit : containment of particles in acceleration (shock) region $E_{max} \sim Z \ e \ B \ R \ c$ (no energy losses)

 \implies Need high B, large R

Supernova remnants: → E_{max} ~ 10¹⁵ eV (knee) Cosmic rays in 10¹⁵ - 10²⁰ eV region ?

 \rightarrow Relativistic motions (Γ)

Cosmic ray detectors

Counting particles: AGASA

Air fluorescence: Fly's Eye

Spherical mirrors viewed by PMT's at the focal plane

Dual setup allows accurate trajectory reconstruction

Amount of light (with 1/r² correction for geometry) → shower profile

 \rightarrow shower maximum X_{max}

→ primary energy

Can only operate on clear and moonless nights

> 13 km apart in Utah desert

Ultra High Energy Cosmic Rays

Puzzling facts

Cosmological sources No GZK cut-off ? No counterpart (any wavelength) Invisible source ?

Possible suspects : Local GRB's

Future with AUGER and EUSO

AUGER

Air fluorescence + ground arrays 2 sites (Argentina, USA): 1600 detectors + 4 telescopes, 3000 km² First results (though not all detectors)

EUSO

Air fluorescence from space Expect 10³ CR yr⁻¹ above GZK Launch: 2010 (for 3 years)

Lecture outline

- What is Astroparticle Physics ?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics Cosmic rays Gamma rays Neutrino astronomy

Gamma ray astronomy

Cosmic accelerators	\rightarrow high energy protons (cosmic rays)
	deviated by B up to 10 ¹⁸ eV
	→ high energy photons (gamma rays)
	point back to source!

- 1952 Prediction of HE gamma-ray emission of Galactic disk
- 1958 First detection of cosmic gamma rays (solar flare)
- 1967 First exhaustive review devoted to gamma-ray astronomy
- 1968 Detection of Galactic disk and Crab nebula

EGRET (E > 100 MeV)

Galactic diffuse interstellar emission from interaction with cosmic rays

<u>Point sources</u>

- Jets from active galactic nuclei
- Galactic sources in star-forming sites : pulsars, binaries, supernova remnants ...
- Unidentified sources (170/270)

Active Galactic Nuclei

- AGN : galaxy with 10^8 $10^9 \ {\rm M_o}$ central black hole
- 10% radio jets (relativistic ejection of plasma)
- 1% blazars (all EGRET AGNs !)

Blazars

Low energy emission (X-ray) : Synchrotron emission of e⁻ in jet

<u>High energy emission</u> (γ-ray):
self-compton (electro-magnetic)
π⁰ decay (hadronic) ?

Quasars and Microquasars

QUASAR 3C 223

MICROQUASAR 1E1740.7-2942

26

Gamma ray bursts (GRB)

- 1967 Chance discovery of prompt emission by VELA (16 events), published in 1973
- 1991 Observation with the satellites C.G.R.O (EGRET, BATSE...) & BeppoSAX

brightest objects in the universe, emitting mostly at high E
→ emission collimated ?
wide variety of time profiles, ∆t from 10ms to 1000s
→ compact region, Lorentz boost (Γ ~100)

2005 (>2000 bursts) still very poorly understood ...

Burst location

Lecture outline

- What is Astroparticle Physics ?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics Cosmic rays Gamma rays Neutrino astronomy

<u>Neutrinos:</u> no charge, "no" interaction with matter nor radiation

High energy sources

High energy

v sources !

- <u>High energy emission</u> (y-ray):
 - self-compton (cleater magnetic) ?
 - π^0 decay (hadronic) ?

Experimental challenge

Low fluxes @ high E Low cross-sections Large volume of detector (lake, sea, polar ice)

High background (atmospheric $\mu \& \nu$)

Good shielding (> 1000m water eq.) Search for upgoing v's

Detection principles

- · Cosmic v (> 1 TeV)
- χχ → ν (10-1000 GeV)
- Atm. v (10-100 GeV)

l· Atm. μ

$$\mathbf{v} \rightarrow \boldsymbol{\mu} \rightarrow Cerenkov light$$

HE neutrino experiments

Detectors

Strings with optical modules (PMT in glass sphere)

Sky coverage

ANTARES (43º North)

<25% exposure AMANDA (South pole)

never

seen

ANTARES/AMANDA: 0.6 sr overlap

Conclusions

Cosmic Ray physics

Existence or not of post GZK cut-off events ?

Gamma Ray physics

Study of high energy sources (AGNs, blazars)

GRB mystery

Neutrino physics

Complementary to photon astrophysics (models confrontations) Indirect dark matter searches

New look on the Universe \rightarrow room for unexpected discoveries