Johanna Stachel

Physikalisches Institut, Universität Heidelberg CERN Summer Student Program - July 25 and 26, 2005

- Lecture I: Dense Matter and the Quark-Gluon Plasma
- Lecture II: Statistical Hadron Production
- Lecture III: Heavy Quarks and Jets as Probes of the QGP

Lectures assembled in collaboration with Peter Braun-Munzinger

Lecture I: Dense Matter and the Quark Gluon Plasma

Johanna Stachel, Universität Heidelberg, Germany

Outline:

- Introduction, historical remarks
- Early universe
- Critical temperature and density
- The phases of strongly interacting matter
- Results from lattice QCD
- Making strongly interacting matter in nuclear collisions
- Survey of experiments

- Pomeranchuk 1951: finite hadron size \rightarrow critical density n_c . Dokl. Akad. Nauk. SSSR 78 (1951) 889.
- Hagedorn 1965: mass spectrum of hadronic states $\rho(m) \propto m^{\alpha} \exp(m/B)$ \rightarrow critical temperature $T_c = B$. Nuovo Cim. Suppl. 3 (1965) 147.
- QCD 1973: asymptotic freedom Nobelprize 2004
 D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 (1973)1343
 H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.
- asymptotic QCD and deconfined quarks and gluons: N. Cabibbo, G. Parisi, Phys. Lett. B59 (1975) 67.
 J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.
- first perturbative corrections to ideal gas: Baym, Chin 1976, Shuryak 1978
- since 1980 new phase was called Quark-Gluon Plasma (QGP): excitations are quark/gluon quasiparticles plus collective plasmon modes (similar to QED plasma)

Evolution of the Universe

from the big bang to galaxies 10^{-5} s after big bang: phase transition from quarks and gluons to hadronic matter temperature at phase transition: $T \approx 2 \cdot 10^{12} K = 200 \text{ MeV}$

1. deconfinement at high temperature (a la Polyakov 1978): $\mathbf{T} = \mathbf{0}$

energy of color string $E_{q\bar{q}}(\mathbf{r}) = \sigma \mathbf{r}$ with string tension $\sigma \approx 1 \text{ GeV/fm}$ T > 0

free energy of string
$$\mathbf{F}_{q\bar{q}}(\mathbf{L}) = \mathbf{E}_{q\bar{q}}(\mathbf{L}) - \mathbf{T} \mathbf{S}(\mathbf{L})$$

= $\sigma \mathbf{L} - \mathbf{T} \ln \mathbf{N}(\mathbf{L})$
= $(\sigma - \mathbf{T}/a \ln 5)\mathbf{L}$
= $\sigma_{eff}(\mathbf{T}) \mathbf{L}$

with number of string configurations: $N(L) = 5^{L/a}$ and typical stepsize a = string thickness ≈ 0.3 fm critical temperature when $\sigma_{eff}(T)=0$ $\rightarrow T_c = \frac{1 \text{GeV } 0.3 \text{fm}}{\text{fm} \ln 5} = 185 \text{ MeV}$

- 2. at high baryon density:
 - normal nuclear matter: baryon density $\rho_0 = \frac{A}{4\pi/3R^3} = \frac{1}{4\pi/3r_0^3} \approx 0.16 / \text{fm}^3$ with $r_0 = 1.15 \text{ fm}$
 - if nuclei are compressed, eventually nucleons start to overlap nucleon charge radius $r_n = 0.8$ fm $\rightarrow \rho_c = \frac{1}{4\pi/3r_n^3} \approx 0.47/\text{fm}^3 = 3 \rho_0$
 - more stringent:

pressure of quark-gluon bubble has to sustain vacuum pressure

at T=0 with bag constant B = 0.2 GeV/fm³ $\rightarrow \mu \ge 0.42$ GeV

critical net quark density $n_q - n_{\bar{q}} \ge 1.9/fm^3$

$$\rightarrow \rho_{c} = 1/3(n_{q} - n_{\bar{q}}) \ge 0.64 = 4\rho_{0}$$

all thermodynamical quantities diverge at T_{limit} (R. Hagedorn, Suppl. Nuovo Cim. 3 (1965) 147)

assume
$$\rho_m \propto (m_0^2 + m^2)^{(-5/4)} \exp(m/b)$$

take energy density of hadron gas, $\epsilon(\mathrm{T})$

$$\epsilon(T) = \Sigma_{m_{\pi}}^{M} \epsilon(m_{i}, T) + I_{M}^{\infty} \epsilon(m, T) \rho(m),$$

but for large masses m > M, $\epsilon(m, T) \propto \exp(-m/T)$

 \rightarrow integral diverges if T > b

Basis: MIT bag model with bag constant B B is energy density of QCD vacuum (see above) energy density of quark-gluon matter: $\epsilon = \epsilon_{thermal} + B$ pressure: P = 1/3 (ϵ - 4 B) with $\epsilon_{thermal} \propto n_{thermal}^{4/3}$ and $\mathbf{P} = \mathbf{n}^2 \partial(\epsilon/n) / \partial n$ note: at T = 0, P = -B!energy density (pressure) of hadron gas: sum up energy density (pressure) due to each particle Gibbs criterion for phase transition:

 $\mathbf{P}_{had} = \mathbf{P}_{QGP}$ and $\mu_{had} = \mu_{QGP}$

Results from "Lattice QCD"

Suceptibilities χ : measure of fluctuations

F. Karsch, E. Laermann, hep-lat/0305025

F. Karsch et al. Bielefeld group, Phys. Lett. B478(2000)447 and Nucl. Phys. A698(2002)199c $16^3 \times 4$ lattice, $m_{ql}/T=0.4$, $m_{qh}/T=1$

Critical Temperature from "Lattice QCD"

F. Karsch, Nucl. Phys. A698(2002)199c and E. Laermann, Proc. Hirschegg 2002

Phase boundary from lattice QCD at finite baryon density

Fluctuations of the baryon number density ($\mu > 0$)

Snapshot of a Pb – Pb Collision

SPS Energy semi-central collision

white: hadrons colored: quarks and gluons

- 1st stage: liberation of quarks and gluons
- 2nd stage: equilibration of quarks and gluons \rightarrow formation of QGP
- **3rd stage: hadronization**
- 4th stage: freeze-out

2

Evolution of the Fireball

signals of hot phase: penetrating probes jets, γ , lepton pairs

information on phase boundary: yields of produced hadrons

Accelerators where ultra-relativistic nuclei collide

	fixed target AGS SPS		colli RHIC	der LHC
	1987-2000		since 2000 from 2007	
beam momentum	29 ·Z GeV/c	450 ·Z GeV/c	ea250-Z GeV/c	ea7000 ·Z GeV/c
projectile	pAu	pPb	pAu	pPb
energy available in c.m. system	Au+Au 600 GeV	Pb+Pb 3200 GeV	Au+Au 40 TeV	Pb+Pb 1150 TeV
hadrons produced per collision	900	2400	7500	40000?

Accelerators and Experiments for Nuclear Collisions

- BNL-AGS (1986 2002): $\sqrt{s} = 5.5$ GeV, Au + Au collisions 5 large experiments: E802/866/917, E810, E814/877, E864, E895.
- CERN-SPS (1986 2004): $\sqrt{s} = 17$ GeV, Pb + Pb collisions 7 large experiments: WA80/98, NA35/49, NA38/50/60, NA44
 - NA45/CERES, WA97/NA57, NA52.
- BNL-RHIC (from 2000): $\sqrt{s} = 200$ GeV, Au + Au collisions 4 large experiments: BRAHMS, PHENIX, PHOBOS, STAR.
- CERN-LHC (from 2007): $\sqrt{s} = 5.5$ TeV, Pb + Pb collisions 3 large experiments: ATLAS, ALICE, CMS

Press Release Feb. 2000: New State of Matter created at CERN

At a special seminar on 10 February, spokespersons from the experiments on CERN* 's Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

nothing know yet about properties of new state

RHIC starts from here

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

heavy ion collider RHIC – dedicated machine

RHIC press release after analysis of first 3 years

Contact: Karen McNulty Walsh, (631) 344-8350 or Mona S. Rowe, (631) 344-5056

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

STAR event display

in central AuAu collsions at RHIC √s = 200 GeV about 7500 hadrons produced

about three times as much as at CERN SPS

- Very high multiplicities demanded new developments
 - 1. Time Projection Chambers (TPC) developed to unprecedented performance
 - 2. Silicon Pixel (and Drift) Detectors

with large area and very fine granularity

3. Electron Identification

in high hadron density environment (RICH and TRD development)

NA45/CERES Experiment at CERN SPS

all novel detectors: 2 Si Drift detectors, 2 RICHes, large radial TPC

CERES Silicon Drift Detectors

combination of 2 or more: form telescopes

two 4" Silicon wafers

- charged particle tracking
- vertex reconstruction

CERES Ring Imaging Cherenkov Counters RICH1/2

electron identification via ring signature about 10 photons per electron ring

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

CERES Event Display

STAR Experiment at RHIC

區演

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

The ALICE Experiment at LHC

central barrel: ITS, TPC, TRD, TOF +

forward muon detector

2007

The ALICE TPC field cage

