Lecture III: Quarkonia and Jets in QGP

Johanna Stachel, Universität Heidelberg, Germany

- Motivation
- $\bullet~{\rm J}/\psi$ Production at SPS energy
- Statistical Coalescence Model and Data
- Jets in Nuclear Collisions

Charm production and J/ψ - suppression

Hadrons with charm-anticharm valence quarks

typically 1 cc–pair per 6 Pb+Pb collisions about 1 in 118 would evolve into a J/ψ about 1 in 7200 into a ψ'

but in Quark–Gluon–Plasma c and \overline{c} do not find each other "attractive interaction is screened"

expect significantly less J/ψ and ψ than without Quark–Gluon–Plasma

Detection: 7% of all $J/\psi \rightarrow \mu^+\mu^-$

T. Matsui and H. Satz, Phys. Lett. **B178** (1986) 416 color screening in QGP prevents $c\bar{c}$ binding screening radius temperature dependent

heavy quark potential

$$V(r) = \sigma \cdot r - \alpha/r$$

becomes screened at finite T:

$$V(r,T) = \frac{\sigma}{\mu(T)}(1 - exp(-\mu(T)r)) - \frac{\alpha}{r}exp(-\mu(T)r)$$

and at some $\mu(T)_D$ and T_D bound state dissolves

F. Karsch and H. Satz, Z. Physik C51 (1991) 209

	\mathbf{J}/ψ	ψ '	χ_c	Υ	Υ,
state	1s	2s	1p	1s	2s
mass(GeV)	3.1	3.7	3.5	9.4	10.0
r (fm)	0.45	0.88	0.70	0.23	0.51
T_D/T_c	1.17	1.0	1.0	2.62	1.12
ϵ_D	1.92	1.12	1.12	43.3	1.65
(GeV/fm^3)					

small states melt at very high temperature only!

screening of heavy quark potential in lattice QCD

NA50 Experiment at SPS: 158 GeV/c Pb + Pb $\rightarrow \mu^+\mu^-$

in pA coll. J/ ψ production suppressed (NA3, NA38, NA50, NA51)

Light Nuclear Collisions fit into the same Picture

 $\sigma(J/\psi) \propto exp(-\rho\sigma_{abs}L)$ with $\rho = 0.17/\text{fm}^3$ and $\sigma_{abs} = 4.1 \pm 0.4$ mb

Suppression of J/ψ production in Pb + Pb as function of centrality

nuclear suppression: $\propto \exp(-L\sigma\rho_0)$

pp, pA and S-Pb data consistent with nuclear suppression only

Co-Mover Models moderately successful very large density (more than 1 hadron/fm³)

Anomalous suppression in Pb-Pb

\mathbf{J}/ψ Suppression in QGP

J.P. Blaizot, P.M. Dinh, J.Y. Ollitrault, Phys.Rev.Lett.85(2000)4012 Dissolution in QGP at critical density n_c (dashes) and with energy density fluctuations (solid)

