





ISOLDE

Isotope Separation On-Line (ISOL)

# Mats Lindroos

# on



TRISTAN UND ISOLDE: Act II

# behalf of the CERN ISOLDE team

Summer students 2005















- Overview of the ISOL technique
- ISOLDE-REX, post acceleration of radioactive ions
- Physics at ISOLDE
- Future plans
- Visit









JHI ELYN & E ROUX 1996



Summer students 2005



























Mats Lindroos on behalf of the **ISOLDE** team

**Ion-source** UC, target -UTRONS p+ beam-sca (<sup>95</sup>Kr yield) converter PROTONS The thermal shock of the proton's dE/dx

HT-oven electrical connections

is transferred to the "cold" converter.







## **ISOECRIS**

- based on a ISOLDE unit
- coils
- consumable unit
- Running off-line



## MINIMONO ISOLDE

- GANIL design [1,2]
- 'standard' ISOLDE unit
- permanent magnets









2005

**ISOLDE** team













- "Isobaric" separation
- Separation limited by the beams transverse size
- Cooling at low energy with RFQ

![](_page_14_Figure_6.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

To get pure beams free from isobaric contamination:

- Target material
- Target and ion source chemistry
- Proton energy
- Ion source
- Magnetic separation

![](_page_17_Figure_0.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

## World Wide Radioactive Beam Facilities

![](_page_18_Figure_3.jpeg)

Summer students 2005

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

- A few-body system of hadrons (neutrons and protons) with many remaining question marks
- "Largest" system where strong and weak interaction are manifested
- "Applications"
  - Astrophysics
  - Condensed matter
  - Energy
  - Medicine

![](_page_21_Picture_0.jpeg)

## WHY NUCLEAR PHYS\*CS?

![](_page_21_Picture_2.jpeg)

"And why nuclear physics? My answer is the same as that of the young student who chose nuclear physics - it is a field of basic research with fascinating fundamental problems and applications to many other areas such as medicine and material science. I believe that nuclear physics is so broad that it is well on the way to becoming the most general natural science." **Professor Paul Kienle**, 1993

Summer students 2005

![](_page_22_Figure_0.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

## THREE PARTICLE BREAK UP OF LIGHT NUCLEY (12C)

![](_page_24_Picture_2.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

<sup>11</sup>Li: Borromean Halo Nucleus

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

Summer students 2005

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_0.jpeg)

#### **Mass measurements**

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

Summer students 2005

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

- Example: samarium isotopes
- "in vivo" dosimetry by positron emission tomography (PET)
- 142-Sm (e, T1/2 = 72m) -> 142-Pm (b, T1/2 = 40s)
- Therapy: 153-Sm (b
  , T1/2 = 47h)

![](_page_30_Picture_6.jpeg)

**PET scan of a rabbit 60 min p.i. of ISOLDE produced 142-Sm in EDTMP solution** 

![](_page_31_Picture_0.jpeg)

#### PRÍNCÍPLE OF RADÍOÍMMUNÍO THERAPY

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

Summer students 2005

![](_page_32_Picture_0.jpeg)

## Post acceleration

- Challenges when accelerating radioactive ions:
  - Low intensity
  - Short half lives
  - Charge state

![](_page_32_Figure_6.jpeg)

Summer students 2005

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

![](_page_36_Picture_0.jpeg)

From M. Vretenar

Summer students 2005

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

- Present PSB cycle 1.2 s
- Increase PSB capacity to cope with increased demands for protons at CERN
- Major proton users to benefit: LHC, ISOLDE, CNGS

![](_page_37_Figure_5.jpeg)

![](_page_37_Figure_6.jpeg)

### From M. Benedikt, AB, CERN

Summer students 2005

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

AIM: provide beams of electron (anti) neutrinos by decay of beta active ions.

![](_page_42_Figure_3.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

2005

**ISOLDE** team

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

MultiUSER detector: Astrophysics, Beta-beam, Super Beam, Proton Decay

Summer students 2005

![](_page_45_Picture_0.jpeg)

#### Combination of beta beam with low energy super beam

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

**Unique to CERN:** 

combines CP and T violation tests

![](_page_45_Figure_7.jpeg)

A. Blondel

Summer students 2005

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

- Nuclear physics and its applications:
  - are fascinating subjects
  - have an exciting future at new large scale facilities
  - holds exciting research opportunities for you; for a Ph.D. and a future research career
- Thank you for your attention!

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

- Today at 15.00!
- Bring your filmbadge
- We are meeting outside the ISOLDE hall (Building 170)

![](_page_47_Figure_5.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

1. RILIS

- 2. Collections (medical physics, solid state physics)
- 3. Control room and targets
  - COLLAPS, COMPLIS and Tilted foil
- **ISOLDE Posters**
- ISOLTRAP
- 7. MISTRAL and NICOLE
- 8. MINI-BALL
- 9. ASPIC
- 10. REX

Summer students 2005