

LHC Computing and Analysis Workshop

Physics Cases - ATLAS

25-26 August 2005 CSCS Manno HansPeter Beck LHEP – Uni Bern

Swiss Contribution to ATLAS

p-p Collisions @ LHC

Physics Selection Strategy

- ATLAS has an inclusive trigger strategy
 - LVL1 Triggers on individual signatures / objects
 - EM / Had Cluster
 - Total Energy
 - Missing Energy
 - Muon track
 - LVL2 confirms & refines LVL1 signature
 - seeding of LVL2 with LVL1 result i.e. Region of Interest [RoI]
 - EventFilter confirms & refines LVL2 signature
 - seedig of EventFilter with LVL2 result
 - tags accepted events according to physics selection
- Offline Analysis is based on trigger samples
 - an individual analysis will always run over a (tag) of events
 - need to understand trigger object selection efficiencies

LVL1 - Muons & Calorimetry

cluster sums and isolation criteria

•
$$\Sigma E_T^{em,had}$$
, E_T^{miss}

HP Beck, 25 August 2005 CHIPP - LHC Computing and Analysis Workshop

LVL1 Trigger Rates

Selection		2*10 ³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
MU20	(20)	0.8	4,0
2MU6		0,2	1.0
EM25I	(30)	12.0	22.0
2EM15I	(20)	4.0	5,0
J 200	(290)	0,2	0.2
3J 90	(130)	0,2	0.2
4J 65	(90)	0,2	0.2
J 60 + ×E60	(100+100)	0.4	0.5
TAU25 + xE30	<mark>(60+60)</mark>	2.0	1.0
MU10 + EM15I		0,1	0.4
Others (pre-scales	s, calibration,)	5.0	5.0
Total		~ 25	~ 40

Rates given in kHz

No safety factor included!

→ E_T thresholds imply 95% efficiency values

LVL1 rate is dominated by electromagnetic clusters: 78% of physics triggers

Inclusive Higher Level Trigger Event Selection

Selection	2x10 ³³ cm ⁻² s ⁻¹	Rates (Hz)
Electron	e25i, 2e15i	~40
Photon	γ <mark>60i</mark> , <mark>2</mark> γ20i	~40
Muon	μ <mark>20i</mark> , 2μ10	~40
Jets	j400, 3j165, 4j110	~25
Jet & E _T ^{miss}	j70 + xE70	~20
tau & E _T ^{miss}	τ 35 + xE45	~5
B-physics	$2\mu 6$ with m _B /m _{J/y}	~10
Others	pre-scales, calibration,	~20
Total		~200

HLT rate reduces e/γ a lot: 45% of physics triggers

HP Beck, 25 August 2005 CHIPP - LHC Computing and Analysis Workshop

DAQ/HLT/TIER0-1-2-3 are all based on PC Farms

HP Beck, 25 August 2005

CHIPP - LHC Computing and Analysis Workshop

ATLAS Event Size

How to Analyze 3 PB/year while still getting the Physics out?

Analysis of ATLAS data (cont)

- What Joe Physicist (aka Heiri/Henri Füsikus, Vreni/Giselle Füsika,) will do
 - Joe is organized in a physics working group
 - e.g. Higgs
 - Joe is looking at a specific/inclusive channel
 - e.g. Higgs \rightarrow four electrons
 - Joe needs to understand how electrons are
 - triggered
 - LVL1, HLT
 - reconstructed
 - efficiencies
 - fakes
 - receive there measured properties
 - 4vector; i.e. energy and 3 momenta
 - error matrix (correlations)
 - Joe runs over many different data samples
 - real data on tight trigger selection (full statistics)
 - Background samples (i.e. complementarory trigger samples; e.g. jet-samples)
 - real data on loosened trigger samples (full statistics not needed need to keep the systematical errors under control)
 - Monte Carlo data (needs to be generated first, simulated, reconstructed)
 - MC produced ATLAS wide via Higgs group
 - Special dedicated MC samples produced by Joe
 - amount defined by precision needed. balance statistical and systematica error
 - With increasing understanding of his task, Joe will do this on
 - ntuples full statistics
 - AODs full statistics
 - ESD maybe full statistics –but more likely only a moderate subset of ESD needed
 - RAW only a small subset a RAW needed

Analysis of ATLAS data (cont)

- Final Analysis of Joe Physicist focused on TIER 2/3/4 centres
 - TIER4 (Laptop): data presentation, job preparation, coding of user specific code
 - TIER3/4: running over small samples
 - skimmed data providing full statistic (specialized AODs or ntuples)
 - test samples (AOD, ESD, RAW) small fraction for debugging and testing
 - producing some dedicated (Joe's) Monte Carlo data (gen, sim, rec, ESD, AOD)
 - TIER2: running over big samples
 - full statistics of Joe's pre-selection (AOD and sometimes even ESD) needs to be available
 - real data and Monte Carlo data
 - fast data movement from TIER1, enough storage at TIER2
 - Joe producing a lot of dedicated Monte Carlo data (gen, sim, rec, ESD, AOD)
- TIER 1/2
 - ATLAS physics groups decide on global production needs
 - i.e. production of a very big Higgs sample can be proposed by Joe but priorities will be decided ATLAS wide
- Joe Physicist is only competitive if these TIERs give him high priorities for his jobs. I.e. do not try to do any of above on Ixplus at Cern
- There is not only Joe there, also Vreni and Heiri have their own and independent analysis...
 HP Beck, 25 August 2005
 CHIPP LHC Computing and Analysis Workshop
 14

Swiss ATLAS Groups will do....

Exploiting ATLAS Physics potential

- based on tagged AOD (and ESD) data
- specific trigger samples, but full statistics
- every physicist has his own preferred trigger samples
 - Higgs, SUSY, Beyond Standard Model, Standard Model
 - Heavy Ion ??

Detector studies

- based on AOD, ESD and RAW data
- calibration, alignment, efficiencies
- events from calibration stream
- often, full statistic sample not needed (a sub-sample is often enough=
 - SCT & LAr
 - more systems will be needed in the course of analyzing data
- RAW data will just be accessed on a small sub-sample of the events available but needed for debugging/improving of reconstruction code

• Trigger studies

- based on AOD and ESD data
- efficiencies
 - specific trigger samples and control samples
 - needed for LVL1, LVL2 and EF

Based on Real Data and Monte Carlo Data

- Real Data needs to be processed and re-processed (calibration, conditions and alignment)
- Monte Carlo Data needs to be produced and processed and re-processed (calibration, conditions, alignment)

TIER2/3

TIER2/3

TIER 1/2/3

Swiss ATLAS Analysis Actual Examples and Experiences...

- Monte Carlo based studies of
 - Offline and Trigger analyses
 - $H \rightarrow ZZ^* \rightarrow 4e$
 - $H \rightarrow ZZ^* \rightarrow 2e2\mu$
 - $H \rightarrow WW^* \rightarrow 2e2\nu$ via VBF

– SUSY

- Participation in DataChallenges for MC production
- sparticle masses (edges) at various mSUGRA points. Including stop and stau coannihilation; bulk region; etc.
- Real Data studied from Combined Test Beam
 - LAr energy calibration
 - electron/pion separation
 - track reconstruction

... and Problems seen on Phoenix, Ubelix,...

Releases installation

- Many flavors of ATLAS s/w on the market, caused confusion
- libraries (system + ATLAS specific) were missing
- differences seen between OS versions
 - Reco (ESD) 9.0.4 went to infinite loop with SL3 build, Not with RH73 build (under SL3!) (Phoenix)
 - pythom boost lib libboost_python-gcc.so changed by admin triggered crashes on 32 bit machines
 - /usr/bin/time directory missing in some Ubelix nodes

• Grid

- NFS problems with nordugrid/Ubelix front end. (NFS failed also on some Phoenix nodes)
- Problems in handling too many jobs submission, even if below the (500) limit (lheppc10).
- #time limit of 500' from some hidden default settings in SGE scheduler, fixed (Ubelix).
- gridftp server problems (various, wrong permission) (Ubelix)
- Oracle DB at cern get stuck (too many requests)

Atlas Software

- Memory leak in reco, memory exceeds requirements (1GB). Problem in 9.0.4. Still not solved in
- 10.0.1. Workaround: require 1.5Gb to reco 50 evt.
- Tauola bug (prodution restarted from scratch)

• Hardware

- PCs that did not supported the load, over-heated, etc.

What Joe Physicsist Expects

applies also to Heiri/Henri Phüsikus and Vreni/Giselle Phüsika

• Analysis of ATLAS data is a complex procedure

- need to go not only over ntuples or AOD data
 - but some access needed to ESD and RAW data
- easy use of middleware
 - i.e. Joe Physicist doesn't even want to know about
- available ATLAS s/w releases
 - more than one in parallel
 - $\,$ » Joe may need version x while Vreni wants y and Henri z
- local Database access
 - condition, calibration, alignment data
- infrastructure robust against s/w still under development
 - memory leaks, infinite loops, crashes
- flexible environment
 - transparent use of TIER 4, TIER 3 and TIER 2 usage
 - Joe does not want to learn every time a new environment
- availability of data
 - at various TIERs
- Independence from Cern Ixplus/Ixshare
 - provided there are enough resources
 - CPU, storage, bandwidth

Conclusions

- ATLAS is well on track
- First data can be expected by mid 2007
 - However
 - Combined Testbeam data already now
 - Cosmics data starting up now (individual detector components)
 - Monte Carlo data existing now
 - Can start implementing and applying policies alread now
- A flexible and robust TIER 2/3/4 system needed for individual analysis
 - otherwise no impact of Swiss physicists to LHC exploitation possible
 - usable resources (CPU, storage, bandwidth) for Swiss physicists concentrated in TIER2 (i.e. Manno) fits well with analysis procedure presented here
 - need for TIER3 (i.e. institutes cluster)
 - for fast turn around in development and debug cycles
 - final analysis over skimmed data sets
- Need to establish policies on how to share and use resources like the Manno cluster
 - this workshop

BackUp Slides

From Bunch Crossings to Physics Analyses

ATLAS Three Level Trigger Architecture

- LVL1 decision made with <u>calorimeter</u> data with coarse granularity and <u>muon trigger</u> <u>chambers</u> data.
 - Buffering on detector
- LVL2 uses <u>Region of Interest data</u> (ca. 2%) with full granularity and combines information from all detectors; performs fast rejection.
 - Buffering in ROBs
- **EventFilter** refines the selection, can perform event reconstruction at full granularity using latest alignment and calibration data.
 - Buffering in EB & EF

ATLAS TDAQ Architecture

Resources needed for Simulating 100k SUSY events

Generation

- **100k events**: 20 files of 5k evgen events
- SIM+DIGI+REC: File size: 50 events/files (<u>limited by memory leak</u>; i.e. s/w bugs)
 20 x 100 jobs, about 10h each

• CPU

- Time to process 1 event: 650 sec on a 2.8 GHz processor
 - GEN 0.5 kSI2-sec
 - SIM+DIGI 100 kSI2-sec
 - REC 15 kSI2-sec
 - Analyze 0.5 kSI2-sec
- 100k hours GHz -or- 4.5k day GHz or- 15 days on a 100x3GHz cluster

DISK SPACE

- Event size
- Generated : 0.07 MB/evt
- Simulated and digitalized (raw data): 2.1 MB/evt
- Reconstructed (ESD) 0.9MB/evt AOD's 0.025 MB/evt
- Total 3MB/event
- Need about 300GB to store 100k events