

The EGEE project and the gLite middleware

Marc-Elian Bégin EGEE Technical Coordination and Dissemination CERN IT

> CERN Summer Students Grid Tutorial, CERN, 24 August 2005

www.eu-egee.org

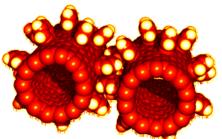
INFSO-RI-508833

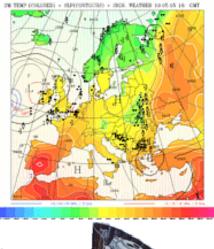
Overview

- EGEE what is it and why is it needed?
- Middleware current and future
- Operations
- Applications running in Production
- Summary

Overview

- EGEE what is it and why is it needed?
- Middleware current and future
- Operations
- Applications running in Production
- Summary

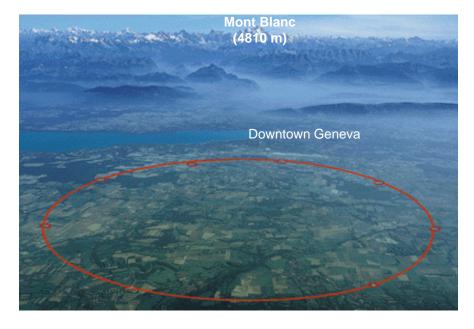

egee


Computing intensive science

- Science is becoming increasingly digital and needs to deal with increasing amounts of data
- Simulations get ever more detailed

Enabling Grids for E-scienc

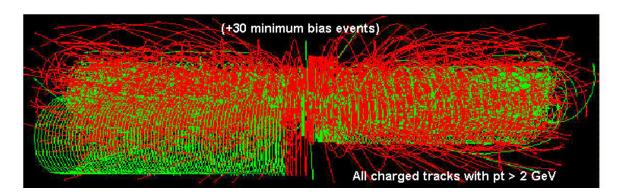
- Nanotechnology design of new materials from the molecular scale
- Modelling and predicting complex systems (weather forecasting, river floods, earthquake)
- Decoding the human genome
- Experimental Science uses ever more sophisticated sensors to make precise measurements
 - → Need high statistics
 - → Huge amounts of data
 - → Serves user communities around the world

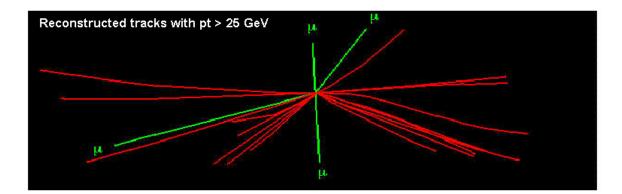

Particle Physics

- CERN: the world's largest particle physics laboratory
- Particle physics requires special tools to create and study new particles: accelerators and detectors

• Large Hadron Collider (LHC):

- One of the most powerful instruments ever built to investigate matter
- four experiments:
 ALICE, ATLAS, CMS, LHCb
- 27 km circumference tunnel
- due to start up in 2007




The LHC Data Challenge

Enabling Grids for E-sciencE

Starting from this event

Looking for this "signature"



\rightarrow Selectivity: 1 in 10¹³ (Like looking for a needle in 20 million haystacks)

INFSO-RI-508833

Data handling

Enabling Grids for E-sciencE

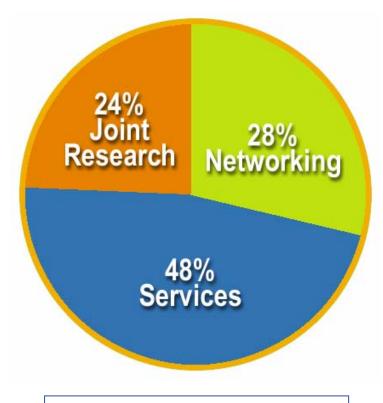
INFSO-RI-508833

eGee

- Integrating computing power and data storage capacities at major computer centres
- Providing users with seamless access to computing resources, 24/7, independent of geographic location

- More effective and seamless collaboration of dispersed communities, both scientific and commercial
- Ability to run large-scale applications comprising thousands of computers, for wide range of applications
- →The term "e-Science" has been coined to express these benefits

eGee



- Goal of EGEE: develop a service grid infrastructure which is available to scientists 24 hours-a-day
- The project concentrates on:
 - building a consistent, robust and secure Grid infrastructure that will attract additional computing resources and applications
 - continuously improve and maintain the middleware in order to deliver a reliable service to users
 - attracting new users from industry as well as science and ensure they receive the high standard of training and support they need
- EGEE is about multi-science on the Grid !!!

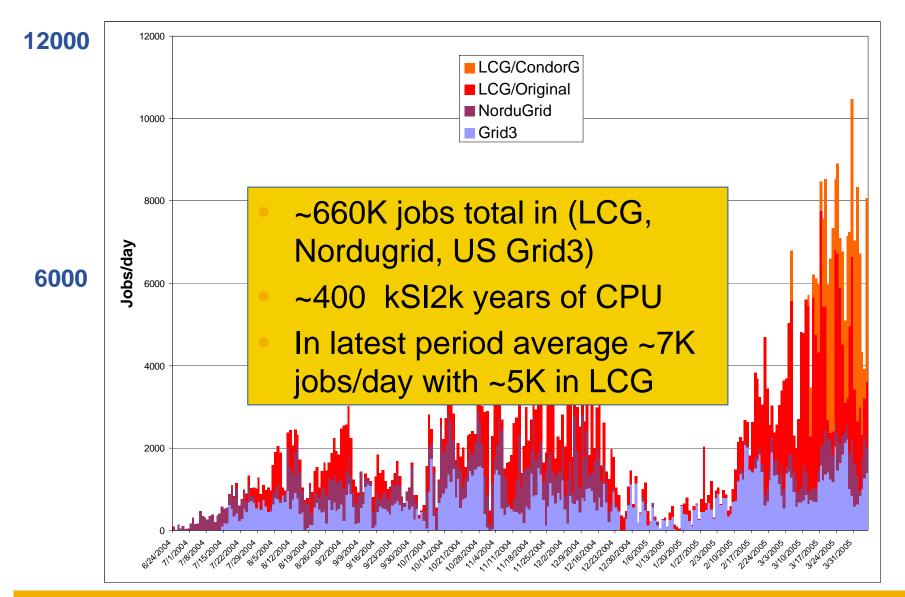
EGEE Activities

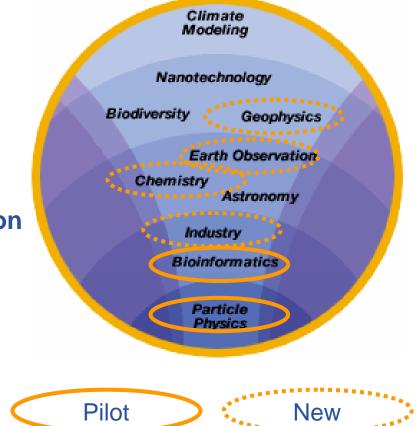
- 48 % service activities (Grid Operations, Support and Management, Network Resource Provision)
- 24 % middleware re-engineering (Quality Assurance, Security, Network Services Development)
- 28 % networking (Management, Dissemination and Outreach, User Training and Education, Application Identification and Support, Policy and International Cooperation)

Emphasis in EGEE is on operating a production grid and supporting the end-users

EGEE Infrastructure

Enabling Grids for E-sciencE


eeee)


(HEP) Utilisation

Enabling Grids for E-sciencE

Deployment of applications

- Enabling Grids for E-science
 - Pilot applications
 - High Energy Physics
 - Biomed applications
 - Generic applications Deployment under way
 - Computational Chemistry
 - Earth science research
 - EGEODE: first industrial application (Geophysics)
 - Astrophysics
 - With interest from
 - Hydrology
 - Seismology
 - Stock market simulators
 - Digital video etc.
 - Industry (provider, user, supplier)

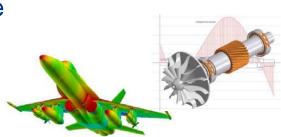
Enabling Grids for E-science

- Transparent access to millions of files across different administration domains
- Low cost access to large computing resources
 - Mobilise quickly very large amount of CPU on very prompt basis
- Produce and store massive amount of data
- Develop applications using distributed complex workflows
- Eases distributed scientific collaborations
- ... All this at a reduced cost!!

• From 1st EGEE EU Review in February 2005:

Enabling Grids for E-sciencE

- "The reviewers found the overall performance of the project very good."
- "... remarkable achievement to set up this consortium, to realize appropriate structures to provide the necessary leadership, and to cope with changing requirements."


• EGEE I

eGee

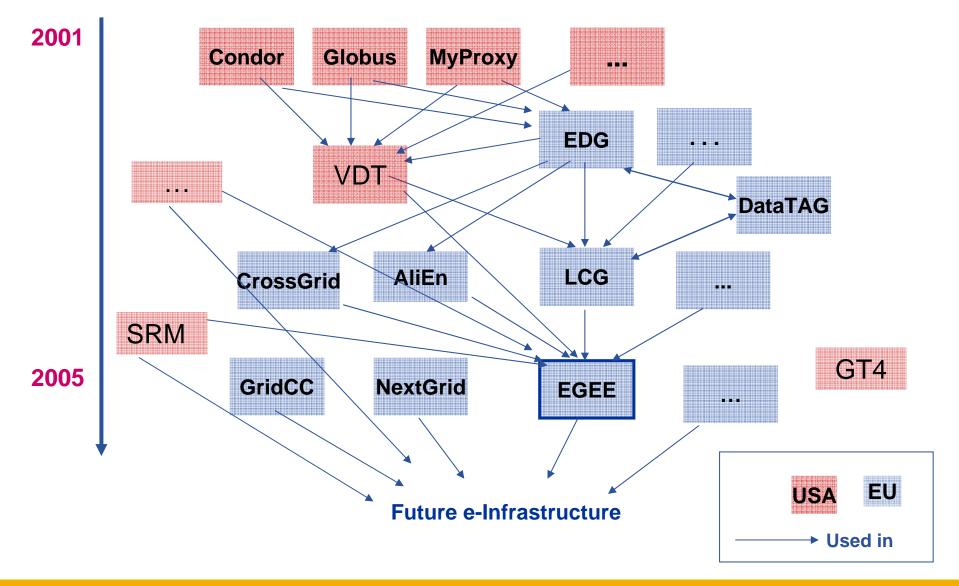
 Large scale deployment of EGEE infrastructure to deliver production level Grid services with selected number of applications

• EGEE II

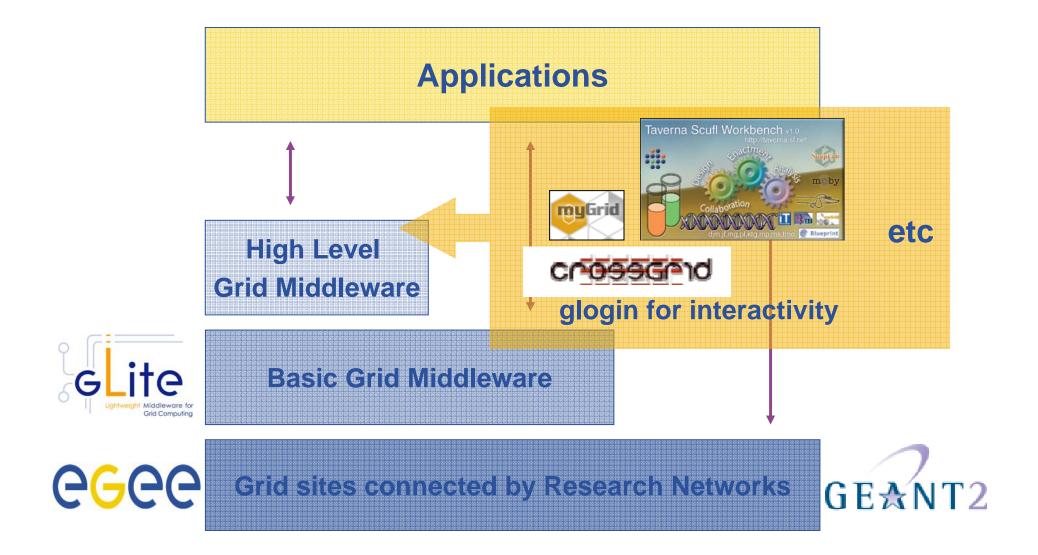
- Natural continuation of the project's first phase
- Opening up to a larger user community
- \rightarrow increased multidisciplinary Grid infrastructure
- \rightarrow more involvement from Industry
- Extending the Grid infrastructure world-wide
- − → increased international collaboration

Overview

- EGEE what is it and why is it needed?
- Middleware current and future
- Operations
- Applications running in Production
- Summary



Where does grid middleware come from?


EGEE view of history

Enabling Grids for E-sciencE

The Grid Stack: The Full Picture

Enabling Grids for E-sciencE

INFSO-RI-508833

eGee

gLite the next generation of middleware

The EGEE project and the gLite middleware - CERN, August 2005 20

- Intended to replace LCG-2
- Started with existing components from AliEN, EDG, VDT, etc.
- Aims to address LCG-2 shortcoming and advanced needs from applications
- Prototyping short development cycles for fast user feedback
- Secure Grid Services, with consistent security infrastructure (critical for many new users)

CGCC New EGEE Middleware – gLite (2) Enabling Grids for E-sciencE

- Lightweight services
- Interoperability & Co-existence with deployed infrastructures
- Performance & Fault Tolerance
- Portable
- Service oriented architecture
- Site autonomy
- Open source license
- 1st release of gLite (v1.0) made end March'05
- Now testing gLite v1.3 in pre-production

CGCC New EGEE Middleware – gLite (3) Enabling Grids for E-sciencE

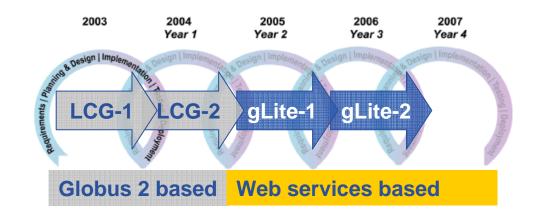
- Service Oriented Architecture components that are :
 - "Loosely Coupled" (by messages and only via interfaces), but "Highly Cohesive" (each method needed and consistent)
 - Accessible across network; modular and self-contained; clean modes of failure; consistent logging
 - Implementations can be interchanged (contract only depending on public interfaces)
- ... and based on standards. Opens EGEE to:
 - New middleware (plethora of tools now available)
 - Heterogeneous resources (storage, computation...)
 - Interact with other Grids (international, regional and national)
 - Looking at: WSRF and OGSA
 - Releasing services with plain Web-Services interfaces (WS-I compliant)

- Lightweight (existing) services
 - Easily and quickly deployable
 - Use existing services where possible as basis for re-engineering

Resilience and Fault Tolerance

- Parts of the Grid can fail without bringing the entire infrastructure down
- Services able to swap service end-points to continue to work

Co-existence with deployed infrastructure

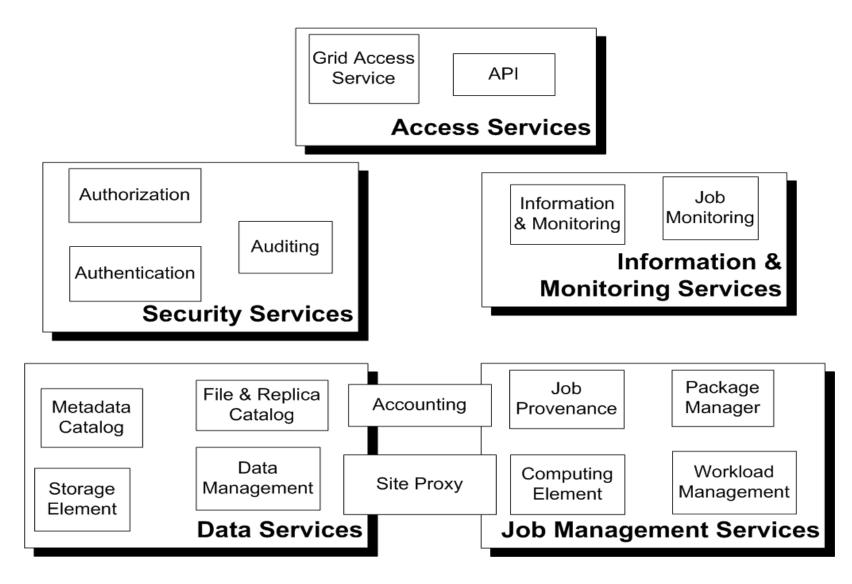

- Reduce requirements on site components
- Co-existence (and convergence) with LCG-2 and Grid3

gLite middleware Release Process

Enabling Grids for E-sciencE

- Development
 - Workload Management
 - Information Systems
 - Security
 - Data Management
- Integration
- Testing

 gLite offers a complete data management solution in a distributed environment building on existing technology


gLite the next generation of middleware

(a few more details)

INFSO-RI-508833

The EGEE project and the gLite middleware - CERN, August 2005 26

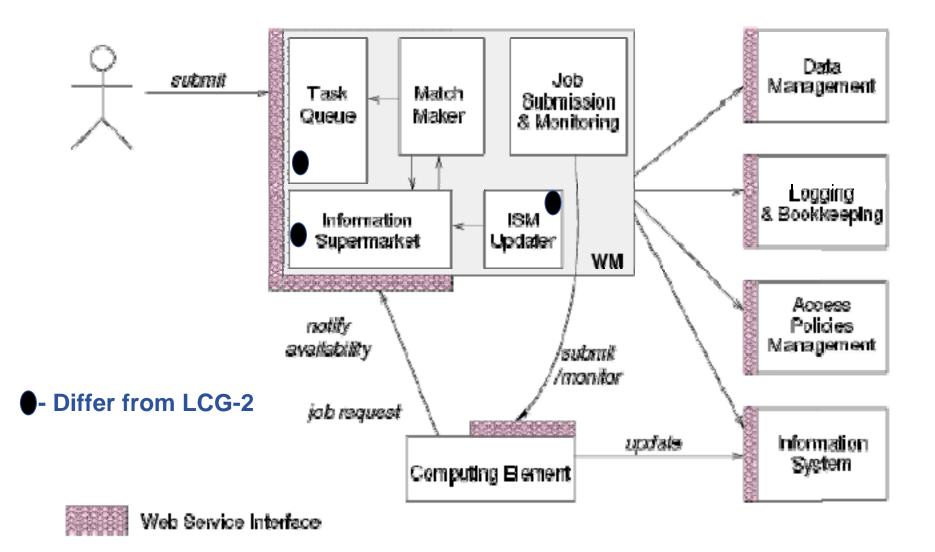
egee

gLite Services in Release 1 Software stack and origin (simplified)

- Computing Element
 - Gatekeeper (Globus)
 - Condor-C (Condor)
 - CE Monitor (EGEE)
 - Local batch system (PBS, LSF, Condor)
- Workload Management
 - WMS (EDG)
 - Logging and bookkeeping (EDG)
 - Condor-C (Condor)
- Information and Monitoring
 - R-GMA (EDG)

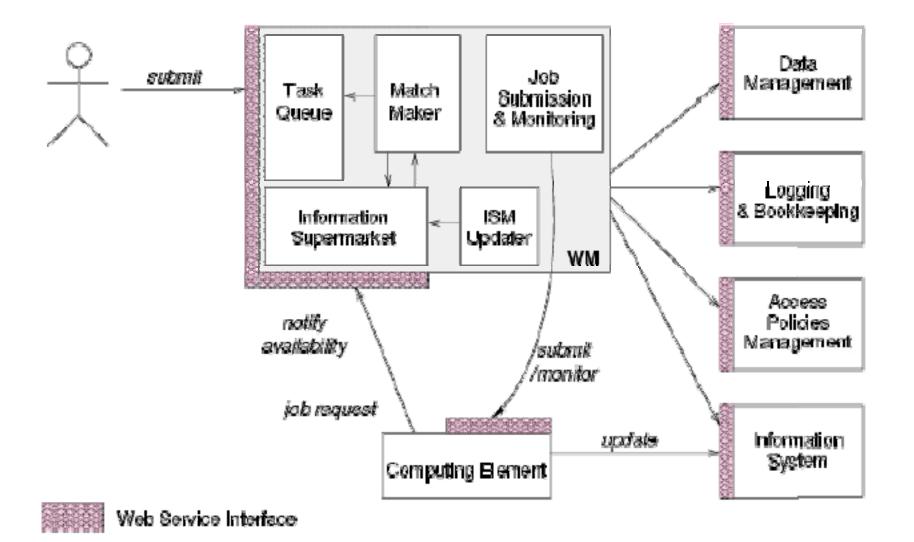
- Storage Element
 - glite-I/O (AliEn)
 - File Transfer Service (EGEE)
 - GridFTP (Globus)
 - SRM: Castor (CERN), dCache (FNAL, DESY), other SRMs
- Catalog
 - File/Replica & Metadata Catalogs (EGEE)
- Security
 - GSI (Globus)
 - VOMS (DataTAG/EDG)
 - Authentication for C and Java based (web) services (EDG)

Now doing rigorous scalability and performance tests on pre-production service


Workload management

(getting a job to run)

- Workload Management System (WMS) comprises a set of Grid middleware components responsible for distribution and management of tasks across Grid resources
 - applications are conveniently, efficiently and effectively executed.
- Comparable services from other grid projects are, among others, the EDG WMS, Condor and the Eurogrid-Unicore resource broker.



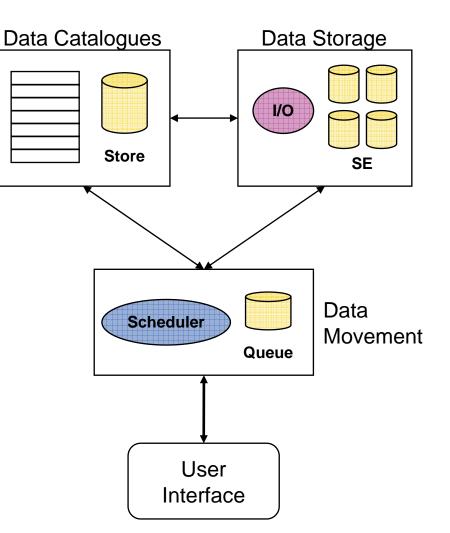
Workload Management System (2)

Enabling Grids for E-sciencE

File management

(managing your data)

INFSO-RI-508833


The EGEE project and the gLite middleware - CERN, August 2005 33

eGee

Data Management Services

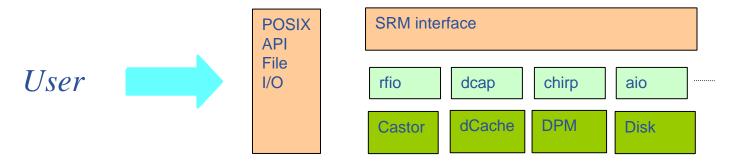
Enabling Grids for E-sciencE

- Storage Element
 - Storage Resource Manager
 - POSIX-I/O
 - Access protocols
- Catalogues
 - File Catalogue
 - Replica Catalogue
 - File Authorization Service
 - Metadata Catalogue
- File Transfer
 - Data Scheduler (not implemented yet)
 - File Transfer Service
 - File Placement Services
- User Interface

gLite Catalogs

File Catalog Replica Catalog Filesystem-like view on logical file names Keeps information at a site Keeps track of sites where data is stored (Meta Data Catalog) • Conflict resolution _ Attributes of files on the logical level Metadata Boundary between generic — Catalog middleware and application layer **Metadata GUID** Site ID LFN **File Catalog** эпе п) LFN LFN **SURL GUID GUID** SURL **SURL SURL Replica Catalog Site A Replica Catalog Site B**

INFSO-RI-508833



Storage Element Interfaces

Enabling Grids for E-sciencE

- SRM interface
 - Management and control
 - SRM (with possible evolution)
- Posix-like File I/O
 - File Access
 - Open, read, write
 - Not real posix (like rfio)

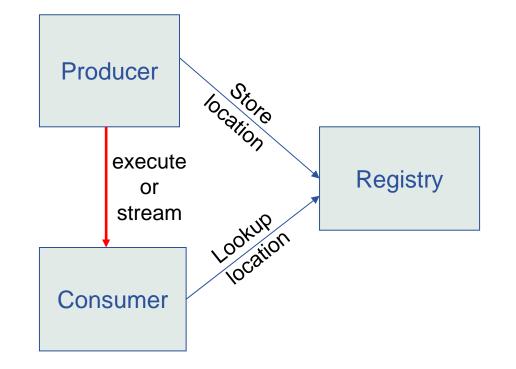
- File Transfer Service
 - Reliable and secure file transfer service
 - From SURL to SURL
- File Placement Service
 - Ability to specify requirement for data (LFN or GUID)
 - Automatic trigger of transfer, before the job lands on the WN

Information System

(finding and using resources)

INFSO-RI-508833

The EGEE project and the gLite middleware - CERN, August 2005 38


egee

- R-GMA is based on the Grid Monitoring Architecture (GMA) from the Grid Global Forum (GGF)
- Simple Consumer-Producer model that models the information infrastructure of a Grid as
 - consumers (that request information)

Enabling Grids for E-science

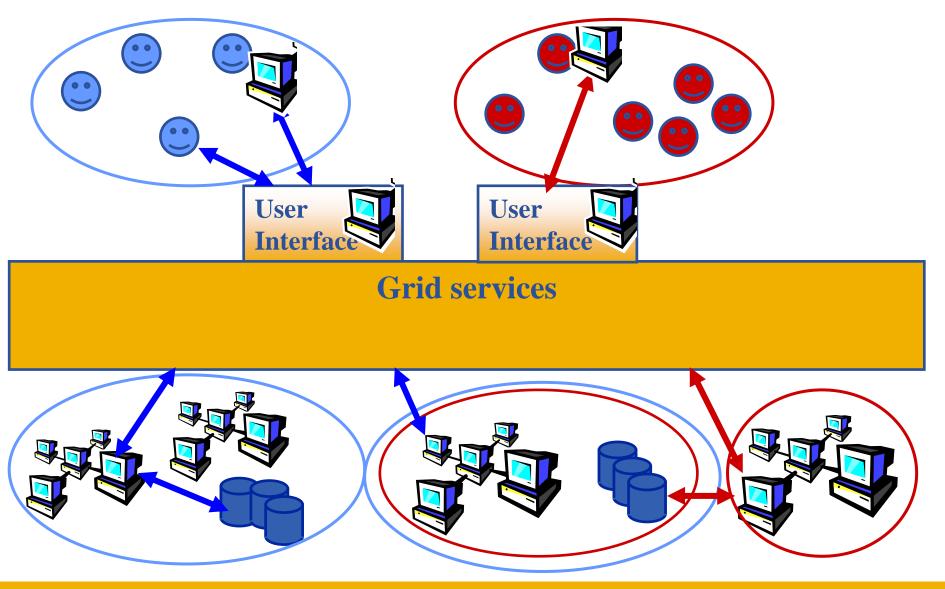
- producers (that provide information) and,
- a central registry
- Mediates the communication between producers and consumers
- Provide replication of data
- Offers a global view of the information as if each Virtual Organization had one large relational database
- Producers contact the registry to announce their intention to publish data
- R-GMA adds a standard query language (a subset of SQL) to the GMA model,

Security

(keep the Grid a safe place)

INFSO-RI-508833

The EGEE project and the gLite middleware - CERN, August 2005 41

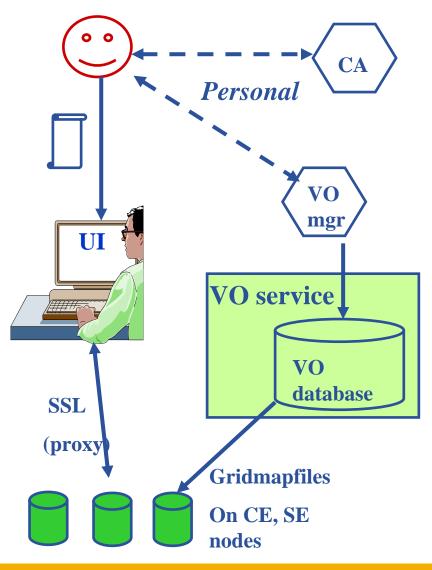


- A VO can be defined as a group which shares Authentication and Authorization procedures in order to allow the sharing of resources
- Other examples
 - Similar to 'group' in a file system
 - In the EU, the *Schengen* countries are a bit like a VO

A Multi-VO Grid

Enabling Grids for E-sciencE

INFSO-RI-508833



Security Framework: Authentication & Authorisation

- Authentication
 - User obtains certificate from CA
 - Connects to UI via ssh
 - Downloads certificate
 - Invokes Proxy server
 - Single sign-on to UI then Secure Socket Layer with proxy identifies user to other nodes

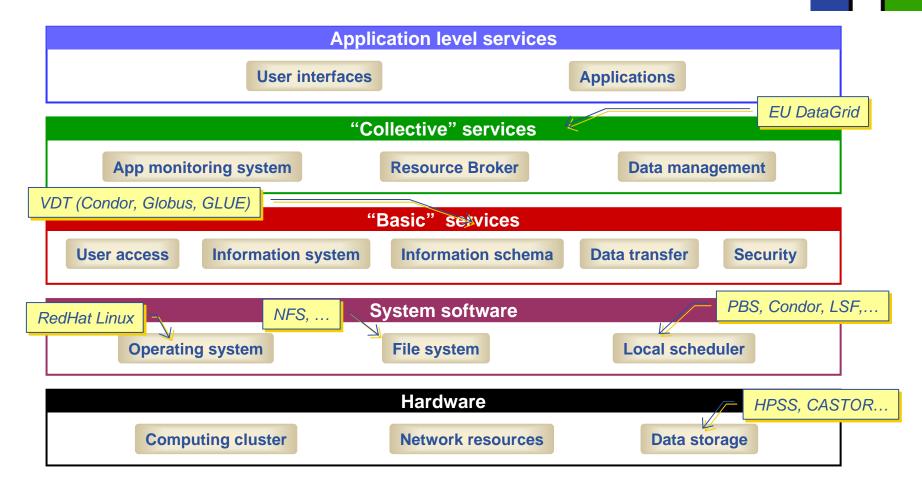
• Authorisation - currently

- User joins Virtual Organisation
- VO negotiates access to Grid nodes and resources (CE, SE)
- Authorisation tested by CE, SE:
 - gridmapfile maps user to local account

- Globus Toolkit[™] proposed and implements the Grid Security Infrastructure (GSI)
 - Protocols and APIs to address Grid security needs
- GSI protocols extend standard public key protocols
 - Standards: X.509 & SSL/TLS
 - Extensions: X.509 Proxy Certificates (single sign-on) & Delegation
- **GSI** extends standard GSS-API (Generic Security Service)
 - The GSS-API is the IETF standard for adding authentication, delegation, message integrity, and message confidentiality to applications.
- Proxy Certificate:
 - Short term, restricted certificate that is derived form a long-term X.509 certificate
 - Signed by the normal end entity cert, or by another proxy
 - Allows a process to act on behalf of a user
 - Not encrypted and thus needs to be securely managed by file system
- OpenSSL now includes GSI features in standard distribution

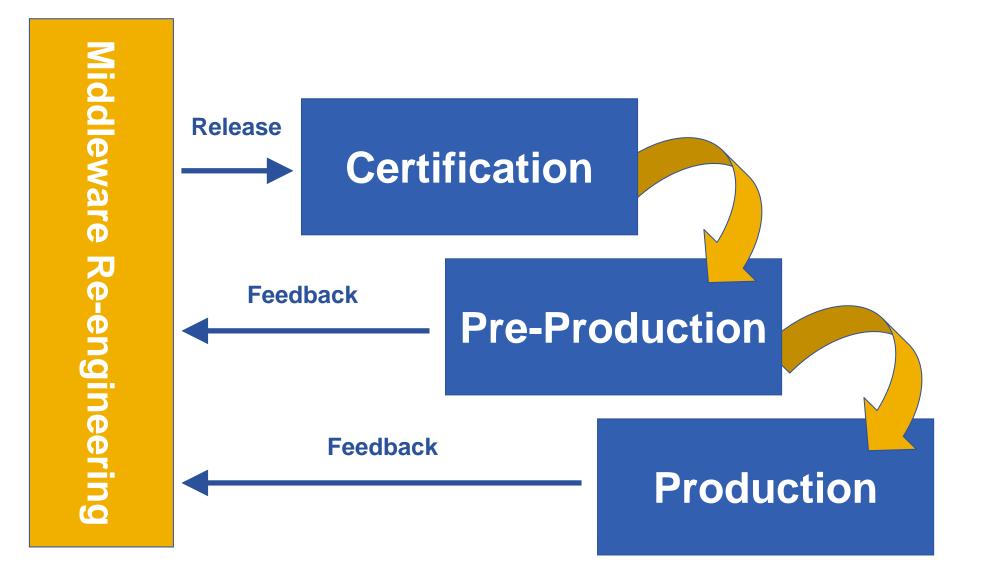
- Security is not only a software matter, but also human and procedures!!
- EGEE has a formal procedure for adding selected new user communities (Virtual Organisations)
 - Negotiation with one of the Regional Operations Centres
 - Seek balance between the resources contributed by a VO and those that they consume
 - Resource allocation will be made at the VO level
 - Many resources need to be available to multiple VOs : shared use of resources is fundamental to a Grid

Overview


- EGEE what is it and why is it needed?
- Middleware current and future
- Operations
- Applications running in Production
- Summary

Regular updates (latest is LCG-2.x)

short term developments driven by operational priorities


INFSO-RI-508833

LCG

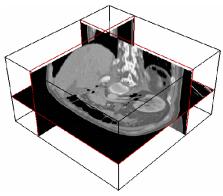
Release process

Enabling Grids for E-sciencE

Overview

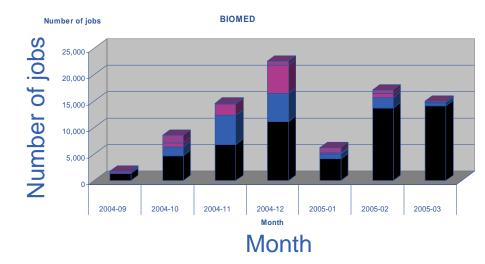
- EGEE what is it and why is it needed?
- Middleware current and future
- Operations
- Applications running in Production
- Summary

Pilot applications


- Enabling Grids for E-science
 - High-Energy Physics (HEP)
 - Provides computing infrastructure (LCG)
 - Challenging:
 - thousands of processors world-wide
 - generating petabytes of data
 - 'chaotic' use of grid with individual user analysis (thousands of users interactively operating within experiment VOs)

Biomedical Applications

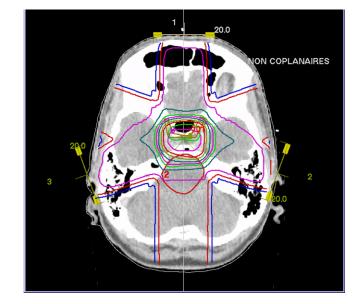
- Similar computing and data storage requirements
- Major challenge: security


BioMed Overview

Enabling Grids for E-sciencE

- Infrastructure
 - ~2.000 CPUs
 - ~21 TB disks
 - in 12 countries

- >50 users in 7 countries working with 12 applications
- 18 research labs
- ~80.000 jobs launched since 04/2004
- ~10 CPU years



GEANT4 Application to Tomography Emission

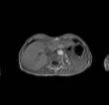
- Scientific objectives
 - Radiotherapy planning to improve treatment of tumors computed from pre-treatment MR scans
- Method
 - GEANT4-based software to model physics of nuclear medicine
 - Monte Carlo simulation to improve accuracy of computations
- Grid added value

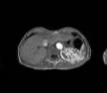
- Splitting the random number sequences needed for Monte Carlo simulations enables independent computations
- Parallelization reduces the total computation time
- Results and perspectives
 - computation time reduced BUT not sufficiently for clinical practice
 - → further optimizations are on-going
 - large community of users is interested in GATE

- Clinical Decision Support System
 - Scientific objectives
 - Extract clinically relevant knowledge to guide practitioners in their clinical practice
 - Method
 - Starting from trained databases
 - Use classifier engines
 - Compare to annotated databases to classify data
 - Grid added value

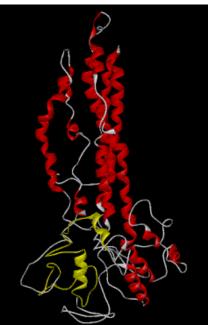
Classification of tumours in soft tissues

- Ubiquitous access to distributed databases and classifier engines
- Grid information system to publish and discover data sources and engines
- Automatic management of login and security
- Results and perspectives
 - 12 classification engines available
 - 1000 medical cases registered
 - Dynamic discovery of all engines can be implemented on top of the grid information system
 - Accounting will be provided by the grid



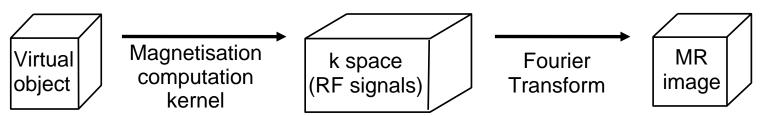

Pharmacokinetics

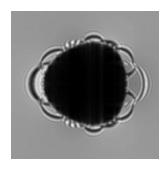
- Enabling Grids for E-sciencE
- **Co-registration of Medical Images**
 - Scientific objectives
 - Contrast Agent Diffusion to characterize tumour tissues without biopsy
 - Method
 - Co-registration requires deformable registration methods \rightarrow compute intensive
 - Grid added value
 - Processing of compute intensive co-registration and generation of diffusion maps for the 3D MRI Studies.
 - Parallel & independent computations on different input data sets
 - Results and perspectives
 - Last clinical test: 12 patients with 13 MRI studies each each study comprises 24 512x512 12-bit slices
 - Processing of the registration algorithm takes around 12 hours per study
 - Registration parameters tuned with four possible combinations
 - Each combination of parameter took 2 hours
 - \rightarrow 72 times faster than with a single computer



institut de Bioleg.

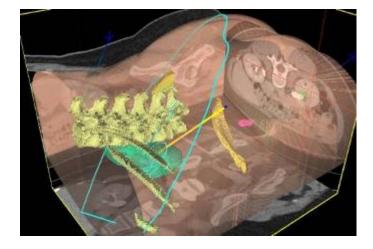
- Grid Protein Structure Analysis
 - Scientific objectives
 - Integrating up-to-date databases and relevant algorithms for bio-informatic analysis of data from genome sequencing projects
 - Method
 - Protein databases are stored on the grid as flat files
 - Protein sequence analysis tools run unchanged on grid resources
 - Output is analysed and displayed in graphic format through the web interface
 - Grid added value
 - Convenient way to distribute and access international databanks, and to store more and larger databases
 - Compute larger datasets with available algorithms
 - Open to a wider user community
 - Results and perspectives
 - 9 bioinformatic softwares gridified so far
 - large number of rather short jobs (few minutes each)
 - Optimizations on-going to
 - speed up access to databases
 - lower short jobs latencies




Enabling Grids for E-sciencE

- 3D Magnetic Resonance Image Simulator
 - Scientific objectives
 - Better understand MR physics by studying MR sequences in silico and MR artefacts
 - Validate MR Image processing algorithms on synthetic but realistic images
 - Method

Grid added value


- Speeds up the simulation time
- Enables simulation of high resolution images
- Offers an access to MPI-enabled clusters
- Results and perspectives
 - Manageable computation time for medium size images
 - Development of a portal to ease access to the application
 - Implementation of new artifacts

- 3D Medical Image Analysis Software
 - Scientific objectives
 - Interactive volume reconstruction on large radiological data
 - Method
 - Starting from hand-made initialization
 - Algorithm segments each slice of a medical volume
 - 3D reconstruction by triangulating contours from consecutive slices
 - Grid added value
 - Interactive reconstruction time: less than 2mins and scalable
 - Permanent availability of resources for fast reconstruction
 - Access to users at non grid-enabled sites (e.g. hospital)
 - Unmodified medically optimized interface
 - Results and perspectives
 - Successfully ported and demonstrated at first EGEE review
 - Streams to/from non EGEE-enabled sites specific protocol, CrossGrid glogin will be considered
 - Resource access QoS: ongoing work

• Macromolecules structure analysis from electron microscopy

- Scientific objectives
 - 3D reconstruction of molecular structural information from cryo-electron microscopy
- Method

egee

- Multi-reference refinement of electron microscopy structures through a maximum likelihood statistical approach
- Grid added value
 - Very compute intensive analysis of multiple structures
 - 2D: one to several weeks on a single CPU
 - 3D: even more costly

Enabling Grids for E-sciencE

- Computation can be split in independent jobs that are executed in parallel
- Results and perspectives
 - First results on 2D analysis show significant time gain: two months on a local cluster (20 CPUs) versus one month on the grid
 - algorithm still being optimized and ported to 3D case
 - MPI implementation is currently being developed that should significantly improve the computation time

xmipp_ML_refine



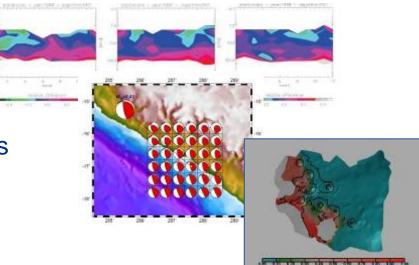
- Electron microscope images correction
 - Scientific objectives
 - Electron microscopy images impaired by electron sources and defocus of magnetic lenses used in experimental practice
 - Image aberrations are described by a Contrast Transfer Function (CTF) that need to be estimated to fix images
 - CTF estimation lead to drastic image enhancement
 - Method
 - Auto regressive modelling is used to estimate parameters of the CTF and produce more reliable results than classical Fourier transform-based approaches
 - Grid added value
 - Very compute intensive: complex functional, slow optimisation process
 - Parallelisation on different grid resources
 - Results and perspectives
 - \rightarrow 2 months on a single CPU
 - \rightarrow 2 days on a local 20-CPUs cluster
 - \rightarrow 14 hours on the grid

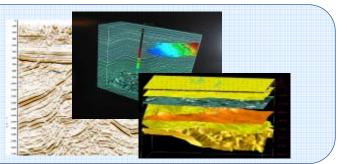
CGCCC In silico Drug Discovery

- Scientific objectives
 - Provide docking information to help in the search for new drugs
 - Propose new inhibitors (drug candidates) addressed to neglected diseases
 - In silico virtual screening of drug candidate databases
- Method
 - Large scale molecular docking on malaria to compute millions of potential drugs with different software and parameters settings
- Grid added value
 - Drug discovery usually takes up to 12 years to complete
 - Docking much faster, but large databases lead to heavy computations
 ⇒ split candidate drug input on different grid resources
- Results and perspectives
 - Limited size computation (105 candidate drugs tested for 1 protein target) achievable in 2 days using the Grid compared to 6 months of CPU time
 - Full data challenge planed
 - 3x106 candidate drugs against 5 protein targets
 - Total computing time will reach 80 years of CPU and 6 TB of storage

- Genome evolution modeling
 - Scientific objectives
 - Study human evolutionary genetics and answer questions such as
 - geographic origin of modern human populations
 - genetic signature of expanding populations
 - genetic contacts between modern humans and Neanderthals
 - Method
 - Simulate past demography of human populations in a geographically realistic landscape
 - Generate molecular diversity of samples of genes drawn from the current human's range, and compare to observed contemporary molecular diversity
 - Grid added value
 - Due to the Bayesian approach used, the SPLATCHE application is very compute intensive
 - Independent simulations can be executed in parallel
 - Results and perspectives
 - Application prototype ported on the EGEE middleware
 - Scale tests on the full grid infrastructure underway

Generic Applications


Enabling Grids for E-sciencE


- 6 applications selected so far:
 - Earth sciences
 - MAGIC
 - Computational Chemistry
 - PLANCK
 - Drug Discovery
 - GRACE (end February 2005)

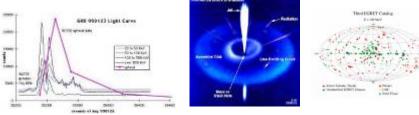
Earth sciences applications

Enabling Grids for E-science

- Earth Observations by Satellite
 - ozone profiles
- Solid Earth Physics
 - Fast Determination of mechanisms of important earthquakes
- Hydrology
 - Management of water resources in Mediterranean area (SWIMED)
- Geology
 - Geocluster: R&D initiative of the Compagnie Générale de Géophysique

- A large variety of applications ported on EGEE which incites new users
- Interactive Collaboration of the teams around a project

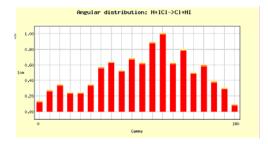
MAGIC

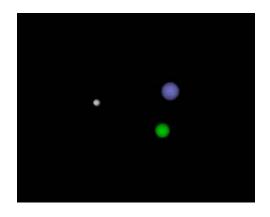

Enabling Grids for E-sciencE

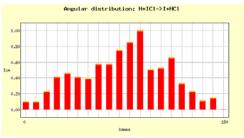
- Ground based Air Cerenkov Telescope 17 m diameter
- Physics Goals:

eGee

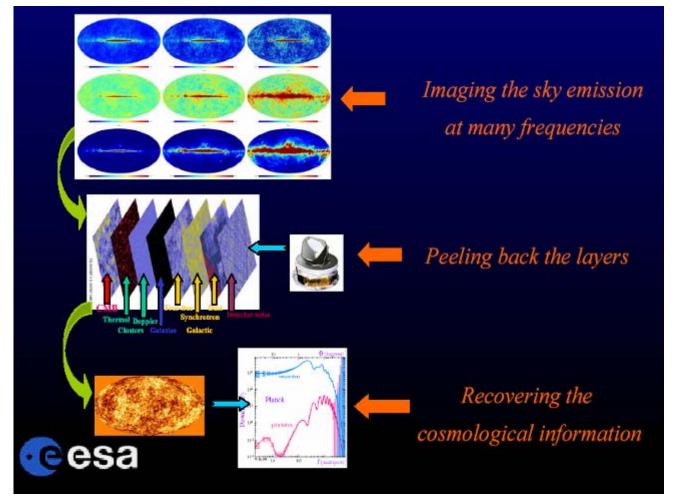
- Origin of VHE Gamma rays
- Active Galactic Nuclei
- Supernova Remnants
- Unidentified EGRET sources
- Gamma Ray Burst
- MAGIC II will come 2007
- Grid added value
 - Enable "(e-)scientific" collaboration between partners
 - Enable the cooperation between different experiments
 - Enable the participation on Virtual Observatories






• The Grid Enabled Molecular Simulator (GEMS)

- Motivation:
 - Modern computer simulations of biomolecular systems produce an abundance of data, which could be reused several times by different researchers.
 - \rightarrow data must be catalogued and searchable
- GEMS database and toolkit:
 - autonomous storage resources
 - metadata specification
 - automatic storage allocation and replication policies
 - interface for distributed computation



Planck

Enabling Grids for E-sciencE

- On the Grid:
 - > 12 time faster(but ~5% failures)
- Complex data
 structure
 - → data handling important
- The Grid as
 - collaboration tool
 - common user-interface
 - flexible environment
 - new approach to data and S/W sharing

Almost Over...

- EGEE what is it and why is it needed?
- Middleware current and future
- Operations
- Applications running in Production
- Summary (can we run jobs now?)

- The Grid attempts to provide scientists with the next generation IT infrastructure
- EGEE is the first attempt to build a worldwide Grid infrastructure for data and compute intensive applications from many scientific domains
- A large-scale production grid service is already deployed and being used for HEP and BioMed applications with new applications being ported
- EGEE is deploying the next generation middleware: gLite

CGCC Things I didn't have time to cover

- Grid Operation
- Support
 - Application
 - Resource Centers
- Application induction and incubation process
- External relations
- EGEE-II and beyond...
- Enjoy the tutorial...

Your feedback is important...

Please fill-in the questionnaire!!

INFSO-RI-508833

The EGEE project and the gLite middleware - CERN, August 2005 71

• EGEE Website

http://www.eu-egee.org

How to join

http://public.eu-egee.org/join/

EGEE Project Office

project-eu-egee-po@cern.ch

• How to learn more about Grids

http://public.eu-egee.org/test/