
W. Pokorski - EP/SFT Simulation Project 1

Geant4 Geometry Objects
Persistency using ROOT

Witek Pokorski
13.07.2005

W. Pokorski - EP/SFT Simulation Project 2

Outline

• Underlying idea
• Overall approach
• Technical issues
• Practical case
• Conclusion

W. Pokorski - EP/SFT Simulation Project 3

Underlying idea

• essential part of any Geant4 simulation application:
geometry description
• probably constitutes the main part of 'data' which needs to be

loaded
• in case of complex geometries can take essential part of the

initialization time

• Geant4 does not come with any persistency mechanism
for the geometry objects
• the Geant4 geometry tree has to be 'rebuilt' each time
• Geant4 geometries are often created by converting from

experiment-specific models which makes then 'non-exportable'

• our goal: provide way of quick saving and reading back
the G4 geometry in/from a (binary) file
• would nicely extend the functionality of the toolkit

W. Pokorski - EP/SFT Simulation Project 4

Some remark...

• this is a different use-case from GDML, where universality
of the format was top-priority
• GDML allows interchanging geometries between different models

(Geant4, ROOT, etc)
- it's 'flavor-free', no application-specific binding

• GDML can also be used for implementing geometry

• ROOT persistency for Geant4 allows saving Geant4
geometry (G4 objects) and reading it back into a Geant4
application
• one could still use it to interchange geometries between different

Geant4 applications
- save LHCb geometry in Gauss and then load it into any other G4

application to run tests of visualize
- it would make Geant4 applications less 'geometry-bound', extend the

spectrum of their usage

W. Pokorski - EP/SFT Simulation Project 5

Overall approach

• use lcgdict tool to create Reflex dictionary for the Geant4
classes
• fully non-intrusive
• can by fully automated (all done in Makefile)
• requires only selection.xml file with list of classes

• Cintex tool allows to convert Reflex dictionary
information into CINT data structure
• Cintex will not be needed once CINT is able to interact directly

with Reflex dictionaries

• use ROOT I/O to save the geometry tree into .root file
• create a simple wrapper class containing pointer to top volume
• call WriteObject method for that object
• ROOT I/O saves all the geometry tree by following the pointers

W. Pokorski - EP/SFT Simulation Project 6

Technical Issues (1/3)

• ROOT I/O requires all the (persistent) classes to
have default constructors

- they are used to allocate memory when reading back the
objects

- they need to initialize all the pointers (non-null pointers are
considered by ROOT I/O as valid ones and are not
overwritten)

• most of the Geant4 geometry classes do not have
default constructors...

• default constructors can be added to Geant4, but
should never be called from the users' code

- constructors in Geant4 perform different kinds of registration
which are not possible in the default case

W. Pokorski - EP/SFT Simulation Project 7

Technical Issues (2/3)

• variable length arrays of objects are not (yet)
supported by ROOT I/O
• Geant4 uses quite often arrays of non-fundamental

types
- only solution for the moment: move to std::vector

• variable length arrays of fundamental types are
supported but header files need to be
instrumented

double* x; //[N]
• could be moved to the selection files (lcgdict) in the

future

needs to be added in the class
definition

W. Pokorski - EP/SFT Simulation Project 8

Technical Issues (3/3)

• a few specific issues
• struct with members being pointers should have

default constructor initializing the pointers
• typedef struct {...} MyStruct;
should be replaced by

struct MyStruct {...};
- lcgdict fails to produce a sensible name for the destructor for

anonymous struct

• MyClass** should be replaced by
std::vector<MyClass*>

- ** is ambiguous from the point of view of persistency; it can
be a pointer to an array or an array of pointers

W. Pokorski - EP/SFT Simulation Project 9

Practical case - writing
• we have our Geant4 geometry (say

LHCb) in memory and we want to
save it in .root file

• we call a simple 'GeoWriter' tool
which:
• creates a 'wrapper' object containing

*TopVolume and pointers to
materials and elements static tables

• calls WriteObject ROOT I/O method

• trivial implementation
• no any 'scanning' of the geometry

tree needed
• ROOT traverses all the geometry

tree and stores it
• only needed thing is to export the

pointer to the top volume

G4
application

*TopVolume
*MaterialsTable
*ElementsTable

WriteObject
ROOT I/O

initialization

Geometry
construction

etc...

W. Pokorski - EP/SFT Simulation Project 10

Practical case - reading

• only binding to ROOT in
DetectorConstruction class

• the Geant4 'main' does not
see the loading of the
geometry using ROOT I/O
• 'standard'

DetectorConstruction
replaced by ROOTDetConstr.

• G4VUserDetectorConstruction
::Construct() returns pointer
to the top volume

• ROOTDetectorConstruction
as a simple 'plug-in'
• one just needs to instantiate

it from the 'main'

G4
application

initialization

Geometry
construction

etc...

GetObject(...)
ROOT I/O

Construct()

G4VPhysical
Volume*

W. Pokorski - EP/SFT Simulation Project 11

Remark on Python interfacing

• once the dictionary for Geant4 classes is there,
Python binding comes for free
• PyLCGDict/PyReflex/PyROOT allows to interact with

any Geant4 as well as ROOT class from Python
• Python ideal to glue different 'worlds' (Geant4, ROOT,

GDML, etc) together
• see http://lcgapp.cern.ch/project/simu/framework/PYGEANT4/pyg4.html

for simple examples

• saving/loading G4 geometry using ROOT I/O
even trivial from Python prompt
• modularization of 'reader/writer' more natural

- less explicit binding

W. Pokorski - EP/SFT Simulation Project 12

Final remarks

• simplest case discussed here - only geometry
(and materials) stored in ROOT file
• next steps (if needed) could include saving

optimization information (voxels?), material cuts
tables, etc

• necessary changes in G4 implemented (on my
local disk....) and tested for LHCb
• entire LHCb geometry & materials file ~220kB
• writing and reading back time - less than 2 seconds

• http://lcgapp.cern.ch/project/simu/framework/G4ROOT/g4root.html
(working document)

W. Pokorski - EP/SFT Simulation Project 13

Conclusions
• dictionary for Geant4 classes is an essential element both

from the point of view of persistency as well as
interactivity
• proposal: generate (and store on AFS) Reflex dictionary for every

new Geant4 release

• geometry objects persistency using ROOT comes (almost)
for free
• would be a very nice additional functionality for the toolkit
• proposal: release LCG-internal version of Geant4 with all the

necessary changes (and the dictionary) to allow users to give it a
try

• once the dictionary is there, Python interfacing comes
(fully) for free with PyLCGDict/PyReflex/PyROOT
• another argument in favor of releasing the dictionary
• Python environment perfect for Plug&Play

